• Title/Summary/Keyword: error sensor

Search Result 2,235, Processing Time 0.037 seconds

Analysis and Compensation of Current Measurement Errors in a Doubly Fed Induction Generator

  • Son, Yung-Deug;Im, Won-Sang;Park, Han-Seok;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.532-540
    • /
    • 2014
  • It is necessary to measure the current of rotor for controlling the active and reactive power generated by the stator side of the doubly fed induction generator (DFIG) system. There are offset and scaling errors in the current measurement. The offset and scaling errors cause one and two times current ripples of slip frequency in the synchronous reference frame of vector control, respectively. This paper proposes a compensation method to reduce their ripples. The stator current is variable according to the wind force but the rotor current is almost constant. Therefore input of the rotor current is more useful for a compensation method. The proposed method adopts the synchronous d-axis current of the rotor as the input signal for compensation. The ripples of the measurement errors can be calculated by integrating the synchronous d-axis stator current. The calculated errors are added to the reference current of rotor as input of the current regulator, then the ripples are reduced. Experimental results show the effectiveness of the proposed method.

A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft (항공기에서 투하되는 수중운동체의 초기정렬기법 연구)

  • 류동기;김삼수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.

Reducing Power Consumption of Wireless Capsule Endoscopy Utilizing Compressive Sensing Under Channel Constraint

  • Saputra, Oka Danil;Murti, Fahri Wisnu;Irfan, Mohammad;Putri, Nadea Nabilla;Shin, Soo Young
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.2
    • /
    • pp.130-134
    • /
    • 2018
  • Wireless capsule endoscopy (WCE) is considered as recent technology for the detection cancer cells in the human digestive system. WCE sends the captured information from inside the body to a sensor on the skin surface through a wireless medium. In WCE, the design of low-power consumption devices is a challenging topic. In the Shannon-Nyquist sampling theorem, the number of samples should be at least twice the highest transmission frequency to reconstruct precise signals. The number of samples is proportional to the power consumption in wireless communication. This paper proposes compressive sensing as a method to reduce power consumption in WCE, by means of a trade-off between samples and reconstruction accuracy. The proposed scheme is validated under channel constraints, expressed as the realistic human body path loss. The results show that the proposed scheme achieves a significant reduction in WCE power consumption and achieves a faster computation time with low signal error reconstruction.

Tracking System of Photovoltaic Generation Using DFC Controller (DFC 제어기를 이용한 태양광 발전의 추적시스템)

  • Jung, Byung-Jin;Choi, Jung-Sik;Ko, Jae-Sub;Kim, Do-Yeon;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.199-201
    • /
    • 2008
  • In this paper proposed the solar tracking system to use direct fuzzy control order to increase an output of the PV (Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a DFC(Direct Fuzzy Control)controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

An Approach for Identifying the Temperature of Inductance Motors by Estimating the Rotor Slot Harmonic Based on Model Predictive Control

  • Wang, Liguo;Jiang, Qingyue;Zhang, Chaoyu;Jin, Dongxin;Deng, Hui
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.695-703
    • /
    • 2017
  • In order to satisfy the urgent requirements for the overheating protection of induction motors, an approach that can be used to identify motor temperature has been proposed based on the rotor slots harmonic (RSH) in this paper. One method to accomplish this is to improve the calculation efficiency of the RSH by predicting the stator winding distribution harmonic order by analyzing the harmonics spectrum. Another approach is to increase the identification accuracy of the RSH by suppressing the influence of voltage flashes or current surges during temperature estimation based on model predictive control (MPC). First, an analytical expression of the stator inductance is extracted from a steady-state positive sequence motor equivalent circuit model developed from the rotor flux field orientation. Then a procedure that applies MPC for reducing the identification error of the rotor temperature caused by voltage sag or swell of the power system is given. Due to this work, the efficiency and accuracy of the RSH have been significantly improved and validated our experiments. This work can serves as a reference for the on-line temperature monitoring and overheating protection of an induction motor.

Feedforward Compensation Method of Output Voltage with 3Phase AC/DC PWM Converter on DC Distribution System for Improved Response (응답성 향상을 위한 직류배전용 3상 AC/DC PWM 컨버터 출력전압 전향보상 기법)

  • Choi, Hyeong-Jun;Lee, Chun-Bok;Hong, Seok-Jin;Hyun, Seung-Wook;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.516-517
    • /
    • 2015
  • This paper proposes the feedforward compensation method of output voltage with 3phase AC/DC PWM converter on DC distribution system for improved response. AC/DC PWM converter on DC distribution is required power supply of high quality because of renewable energy sources and load links. In general, Feedforward compensation method of 3phase AC/DC PWM converter receives the sensor input to the output current, load power. Resulting, error of the sensing values and communication cause time delay. Therefore, Feedforward compensation method through only the output voltage is proposed in this paper. The feedforward compensation method through only the output voltage can be applied to the two-level AC/DC PWM converters, as well as multi-level converter or inverter.

  • PDF

An estimation of surface reflectance for Advanced Himawari Imager (AHI) data using 6SV

  • Seong, Noh-hun;Lee, Chang Suk;Choi, Sungwon;Seo, Minji;Lee, Kyeong-Sang;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.67-71
    • /
    • 2016
  • The surface reflectance is essential to retrieval various indicators related land properties such as vegetation index, albedo and etc. In this study, we estimated surface reflectance using Himawari-8 / Advanced Himawari Imager (AHI) channel data. In order to estimate surface reflectance from Top of Atmosphere (TOA) reflectance, the atmospheric correction is necessary because all of the TOA reflectance from optical sensor is affected by gas molecules and aerosol in the atmosphere. We used Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) to correct atmospheric effect, and Look-Up Table (LUT) to shorten the calculation time. We verified through comparison Himawri-8 / AHI surface reflectance and Proba-V S1 products. As a result, bias and Root Mean Square Error (RMSE) are calculated about -0.02 and 0.05.

Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation (선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구)

  • Kim, Seul Ki;Kim, Hyeong Jun;Lee, Suk;Park, Sung Hyun;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Perception Method of the Marking Location for Automation of Billet Marking Processes (빌릿 마킹 공정의 자동화를 위한 마킹 위치 인식 방법)

  • Park Jin-Woo;Yook Hyunho;Che Wooseong;Boo Kwangsuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.127-134
    • /
    • 2005
  • The machine vision has been applied to a number of industrial applications for quality control and automations to improve the manufacturing processes. In this paper, the automation system using the machine vision is developed, which is applicable to the marking process in a steel production process line. The working environment is very harsh to workers so that the automatic system in the steel industry is required increasingly. The developed automatic marking system consists of several mechanical and electrical elements such as the laser position detecting sensor system fur a structured laser beam which is projected to the billet in order to detect the geometry of the billet. An image processing algorithm has been developed to percept the two center positions of a camera and a billet, respectively, and to align two centers. A series of experiments has been conducted to investigate the performance of the proposed algorithm. The results show that two centers of the camera and the billet could be detected very well and differences between two center positions could be also decreased via the proposed location error decreasing algorithm.