• Title/Summary/Keyword: error sensor

Search Result 2,235, Processing Time 0.037 seconds

Design of a Nonlinear Observer for Mechanical Systems with Unknown Inputs (미지 입력을 가진 기계 시스템을 위한 비선형 관측기 설계)

  • Song, Bongsob;Lee, Jimin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.411-416
    • /
    • 2016
  • This paper presents the design methodology of an unknown input observer for Lipschitz nonlinear systems with unknown inputs in the framework of convex optimization. We use an unknown input observer (UIO) to consider both nonlinearity and disturbance. By deriving a sufficient condition for exponential stability in the linear matrix inequality (LMI) form, existence of a stabilizing observer gain matrix of UIO will be assured by checking whether the quadratic stability margin of the error dynamics is greater than the Lipschitz constant or not. If quadratic stability margin is less than a Lipschitz constant, the coordinate transformation may be used to reduce the Lipschitz constant in the new coordinates. Furthermore, to reduce the maximum singular value of the observer gain matrix elements, an object function to minimize it will be optimally designed by modifying its magnitude so that amplification of sensor measurement noise is minimized via multi-objective optimization algorithm. The performance of UIO is compared to a nonlinear observer (Luenberger-like) with an application to a flexible joint robot system considering a change of load and disturbance. Finally, it is validated via simulations that the estimated angular position and velocity provide true values even in the presence of unknown inputs.

Neural Network-Based Modeling for Fuel Consumption Prediction of Vehicle (차량 연료 소모량 예측을 위한 신경회로망 기반 모델링)

  • Lee, Min-Goo;Jung, Kyung-Kwon;Yi, Sang-Hoi
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.19-25
    • /
    • 2011
  • This paper presented neural network modeling method using vehicle data to predict fuel consumption. To acquire data for training and testing the proposed neural network, medium-class gasoline vehicle drove at downtown and parameters measured include speed, engine rpm, throttle position sensor (TPS), and mass air flow (MAF) as input data, and fuel consumption as target data from OBD-II port. Multi layer perception network was used for nonlinear mapping between the input and the output data. It was observed that the neural network model can predict the vehicle quite well with mean squared error was $1.306{\times}10^{-6}$ for the fuel consumption.

The Design of Target Tracking System Using FBFE based on VEGA (VEGA 기반 FBFE를 이용한 표적 추적 시스템 설계)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.126-130
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

Development of autonomous system using magnetic position meter (자기거리계를 이용한 자율주행시스템의 개발)

  • Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.343-348
    • /
    • 2007
  • Development of autonomous vehicle system that use magnetic position meter research of intelligence transportation system is progressed worldwide active by fast increase of vehicles. Among them, research about autonomous of vehicles occupies field. And autonomous of vehicles is element that path recognition is basic. Existent magnetic base autonomous system analyzes three-dimensional data of magnet marker to 3 axises magnetic sensor and recognized route. But because using Magnetic Wire and Magnetic Position Meter in treatise that see, measure side lateral error and propose system that driving. And system that compare with system of autonomous vehicles and propose wishes to verify by hardware of that specification and simple algorithm through an experiment that autonomous is available.

Positioning and Driving Control of Fork-type Automatic Guided Vehicle With Laser Navigation

  • Kim, Jaeyong;Cho, Hyunhak;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • We designed and implemented a fork-type automatic guided vehicle (AGV) with a laser guidance system. Most previous AGVs have used two types of guidance systems: magnetgyro and wire guidance. However, these guidance systems have high costs, are difficult to maintain with changes in the operating environment, and can drive only a pre-determined path with installed sensors. A laser guidance system was developed for addressing these issues, but limitations including slow response time and low accuracy remain. We present a laser guidance system and control system for AGVs with laser navigation. For analyzing the performance of the proposed system, we designed and built a fork-type AGV, and performed repetitions of our experiments under the same working conditions. The results show an average positioning error of 51.76 mm between the simulated driving path and the driving path of the actual fork-type AGV. Consequently, we verified that the proposed method is effective and suitable for use in actual AGVs.

Development of Fuzzy Controller for High Performance Solar tracking of PV System (PV 시스템의 고효율 태양 추적을 위한 퍼지제어기 개발)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jun;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.315-318
    • /
    • 2008
  • In this paper proposed the solar tracking system to use a fuzzy control order to increase an output of the PV(Photovoltaic) array. The solar tracking system operated two DC motors driving by signal of photo sensor. The control of dual axes is not an easy task due to nonlinear dynamics and unavailability of the parameters. Recently, artificial intelligent control of the fuzzy control, neural-network and genetic algorithm etc. have been studied. The fuzzy control made a nonlinear dynamics to well perform and had a robust and highly efficient characteristic about a parameter variable as well as a nonlinear characteristic. Hence the fuzzy control was used to perform the tracking system after comparing with error values of setting-up, nonlinear altitude and azimuth. In this paper designed a fuzzy controller for improving output of PV array and evaluated comparison with efficient of conventional PI controller. The data which were obtained by experiment were able to show a validity of the proposed controller.

  • PDF

Design and performance evaluation of portable electronic nose systems for freshness evaluation of meats II - Performance analysis of electronic nose systems by prediction of total bacteria count of pork meats (육류 신선도 판별을 위한 휴대용 전자코 시스템 설계 및 성능 평가 II - 돈육의 미생물 총균수 예측을 통한 전자코 시스템 성능 검증)

  • Kim, Jae-Gone;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.761-767
    • /
    • 2011
  • The objective of this study was to predict total bacteria count of pork meats by using the portable electronic nose systems developed throughout two stages of the prototypes. Total bacteria counts were measured for pork meats stored at $4^{\circ}C$ for 21days and compared with the signals of the electronic nose systems. PLS(Partial least square), PCR (Principal component regression), MLR (Multiple linear regression) models were developed for the prediction of total bacteria count of pork meats. The coefficient of determination ($R_p{^2}$) and root mean square error of prediction (RMSEP) for the models were 0.789 and 0.784 log CFU/g with the 1st system for the pork loin, 0.796 and 0.597 log CFU/g with the 2nd system for the pork belly, and 0.661 and 0.576 log CFU/g with the 2nd system for the pork loin respectively. The results show that the developed electronic system has potential to predict total bacteria count of pork meats.

Sensorless Speed Control of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 센서리스 속도제어)

  • 김종수;김덕기;오세진;이성근;유희한;김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.695-704
    • /
    • 2002
  • Generally, induction motor controller requires rotor speed sensor for commutation and current control, but it increases cost and size of the motor. So in these days, various researches including speed sensorless vector control have been reported and some of them have been put to practical use. In this paper a new speed estimation method using neural networks is proposed. The optimal neural network structure was tracked down by trial and error, and it was found that the 8-16-1 neural network has given correct results for the instantaneous rotor speed. Supervised learning methods, through which the neural network is trained to learn the input/output pattern presented, are typically used. The back-propagation technique is used to adjust the neural network weights during training. The rotor speed is calculated by weights and eight inputs to the neural network. Also, the proposed method has advantages such as the independency on machine parameters, the insensitivity to the load condition, and the stability in the low speed operation.

A Study on Realization of Machining Process and Condition in Virtual Space (가상공간의 가공 공정과 상태 구현에 관한 연구)

  • Lee oo-Hun;Kim Bong-Suk;Hong Min-Sung;Kim Jong-Min;Ni Jun;Park Sang-Ho;Song Jun-Yeob;Lee Chang-Woo;Ha Tae-Ho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.462-467
    • /
    • 2005
  • This paper presents virtual machining system in order to realize turning process in virtual space. A reliable virtual turning process simulation was developed based on the surface shaping system which is capable of considering geometric model, thermal error model, and vibration model. Accuracy of surface shape resulting from proposed machining simulator was verified experimentally. This paper also developed the watchdog agent that continuously assessed, diagnosed, and predicted performance of products and machines in machining. The Watchdog agent extracted feature signal using time-frequency analysis among various signals from multi-sensor and evaluated machining condition using performance confidence value.

  • PDF

Kinematic and Image Stabilization of a Two-axis Surveillance System on Ship (선상 2축 감시장비의 기구 및 영상 안정화)

  • Lee, Kyung-Min;Cho, Jae-Hyun;Kim, Ho-Bum;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.55-60
    • /
    • 2012
  • When operating a surveillance system in the maritime environment, its stabilization performance is degraded due to undesirable disturbance motions. For accurate target pointing of a 2-axes surveillance system on shipboard, the kinematic stabilization is first applied, which compensates a deviated motion via coordinate transformations of attitude information. Resultantly, the stabilization error is no longer reduced due to less accuracy of a MEMS sensor and kinematic constraint, leading to introduction of the image stabilization as a complementary function. And for real-time execution of the present dual stabilization scheme, a HILS (Hardware In the Loop Simulation) test bed including 6-dof motion simulator has been constructed, and through the obtained HILS data, it has been confirmed that the stabilization is successfully.