• Title/Summary/Keyword: error remains

Search Result 124, Processing Time 0.05 seconds

REQUIREMENTS FOR AUTOMATED CODE CHECKING FOR FIRE RESISTANCE AND EGRESS RULE USING BIM

  • Jiyong Jeong;Ghang Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.316-322
    • /
    • 2009
  • The more repetitive, complex and objective the work, the more effective automation is. Code checking is an example of this. Checking building codes through a thick set of drawings is error-prone and time-consuming. In order to overcome this problem, several organizations have initiated efforts to automate building-code checking. Initiated study mainly focused on checking codes for invalidation, required size and crash, and then area of checkable codes have been expanding. But, it has not been considered for codes regarding anti-disaster/egress, which is also issued these days. This study is about how to automatically check codes for anti-disaster and egress based on Korea building codes. The codes can be categorized as five sections: egress way, material/capability, principals of evacuation, evacuation stairway and fire protection partition. To check automatically, there are problems, such as expression of codes for egress and limitation of extractable information from the BIM model. This paper shows what problems exist and assignments to be resolved. Also, current developing processes are presented, and suggestions are made about the direction for the work that remains.

  • PDF

A Novel Broadband Channel Estimation Technique Based on Dual-Module QGAN

  • Li Ting;Zhang Jinbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1369-1389
    • /
    • 2024
  • In the era of 6G, the rapid increase in communication data volume poses higher demands on traditional channel estimation techniques and those based on deep learning, especially when processing large-scale data as their computational load and real-time performance often fail to meet practical requirements. To overcome this bottleneck, this paper introduces quantum computing techniques, exploring for the first time the application of Quantum Generative Adversarial Networks (QGAN) to broadband channel estimation challenges. Although generative adversarial technology has been applied to channel estimation, obtaining instantaneous channel information remains a significant challenge. To address the issue of instantaneous channel estimation, this paper proposes an innovative QGAN with a dual-module design in the generator. The adversarial loss function and the Mean Squared Error (MSE) loss function are separately applied for the parameter updates of these two modules, facilitating the learning of statistical channel information and the generation of instantaneous channel details. Experimental results demonstrate the efficiency and accuracy of the proposed dual-module QGAN technique in channel estimation on the Pennylane quantum computing simulation platform. This research opens a new direction for physical layer techniques in wireless communication and offers expanded possibilities for the future development of wireless communication technologies.

Association Between Dietary Fiber Intake and Low Muscle Strength Among Korean Adults

  • Sunhye Shin
    • Clinical Nutrition Research
    • /
    • v.13 no.1
    • /
    • pp.33-41
    • /
    • 2024
  • The health benefits of dietary fiber are widely recognized, but its impact on muscle health remains unclear. Therefore, this study aimed to elucidate the relationship between dietary fiber intake and muscle strength through a cross-sectional analysis of data from the Korea National Health and Examination Survey (KNHANES). Data from a single 24-h dietary recall and handgrip strength tests of 10,883 younger adults aged 19 to 64 years and 3,961 older adults aged ≥ 65 years were analyzed. Low muscle strength was defined as handgrip strength < 28 kg for men and < 18 kg for women. Multivariable linear and logistic regression analyses were conducted to determine the association of dietary fiber intake with muscle strength. Approximately 43% of Korean adults met the recommended intake of dietary fiber, and those with higher dietary fiber consumption also had higher total energy and protein intake. After adjusting for confounding variables, dietary fiber intake was found to be positively associated with maximal handgrip strength in younger women aged 19 to 64 years (β = 0.015; standard error [SE] = 0.006) and older men aged ≥ 65 years (β = 0.035; SE = 0.014). For older women aged ≥ 65 years, those in the lowest quartile of dietary fiber intake had a higher risk of low muscle strength than those in the highest quartile after adjustment of confounders (odds ratio 1.709; 95% confidence interval 1.130-2.585). These results suggest that adequate dietary fiber intake may reduce the risk of sarcopenia in older Korean women.

Study on the applicability of regression models and machine learning models for predicting concrete compressive strength

  • Sangwoo Kim;Jinsup Kim;Jaeho Shin;Youngsoon Kim
    • Structural Engineering and Mechanics
    • /
    • v.91 no.6
    • /
    • pp.583-589
    • /
    • 2024
  • Accurately predicting the strength of concrete is vital for ensuring the safety and durability of structures, thereby contributing to time and cost savings throughout the design and construction phases. The compressive strength of concrete is determined by various material factors, including the type of cement, composition ratios of concrete mixtures, curing time, and environmental conditions. While mix design establishes the proportions of each material for concrete, predicting strength before experimental measurement remains a challenging task. In this study, Abrams's law was chosen as a representative investigative approach to estimating concrete compressive strength. Abrams asserted that concrete compressive strength depends solely on the water-cement ratio and proposed a logarithmic linear relationship. However, Abrams's law is only applicable to concrete using cement as the sole binding material and may not be suitable for modern concrete mixtures. Therefore, this research aims to predict concrete compressive strength by applying various conventional regression analyses and machine learning methods. Six models were selected based on performance experiment data collected from various literature sources on different concrete mixtures. The models were assessed using Root Mean Squared Error (RMSE) and coefficient of determination (R2) to identify the optimal model.

Analysis on Creep of Concrete under Multiaxial Stresses Using Microplane Model (미세평면 모델을 적용한 다축응력 상태의 콘크리트 크리프 분석)

  • Kwon Seung-Hee;Kim Yun-Yong;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.195-204
    • /
    • 2004
  • Poisson's ratio due to multiaxial creep of concrete reported by existing experimental works was controversial. Poisson's ratio calculated from measured strain is very sensitive to small experimental error. This sensitivity make it difficult to find out whether the Poisson's ratio varies with time or remain constant, and whether the Poisson's ratio has different value with stress states or not. A new approach method is needed to resolve the discrepancy and obtain reliable results. This paper presents analytical study on multiaxial creep test results. Microplane model as a new approach method is applied to optimally fitting the test data extracted from experimental studies on multiaxial creep of concrete. Double-power law is used as a model to present volumetric and deviatoric creep evolutions on a microplane. Six parameters representing the volumetric and deviatoric compliance functions are determined from regression analysis and the optimum fits accurately describe the test data. Poisson's ratio is calculated from the optimum fits and its value varies with time. Regression analysis is also performed assuming that Poisson's ratio remains constant with time. Four parameters are determined for this condition, and the error between the optimum fits and the test data is slightly larger than that for six parameter regression results. The constant Poisson's ratio with time is obtained from four parameter analysis results and the constant value can be used in practice without serious error.

Fuzzy Logic PID controller based on FPGA

  • Tipsuwanporn, V.;Runghimmawan, T.;Krongratana, V.;Suesut, T.;Jitnaknan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1066-1070
    • /
    • 2003
  • Recently technologies have created new principle and theory but the PID control system remains its popularity as the PID controller contains simple structure, including maintenance and parameter adjustment being so simple. Thus, this paper proposes auto tune PID by fuzzy logic controller based on FPGA which to achieve real time and small size circuit board. The digital PID controller design to consist of analog to digital converter which use chip TDA8763AM/3 (10 bit high-speed low power ADC), digital to analog converter which use two chip DAC08 (8 bit digital to analog converters) and fuzzy logic tune digital PID processor embedded on chip FPGA XC2S50-5tq-144. The digital PID processor was designed by fundamental PID equation which architectures including multiplier, adder, subtracter and some other logic gate. The fuzzy logic tune digital PID was designed by look up table (LUT) method which data storage into ROM refer from trial and error process. The digital PID processor verified behavior by the application program ModelSimXE. The result of simulation when input is units step and vary controller gain ($K_p$, $K_i$ and $K_d$) are similarity with theory of PID and maximum execution time is 150 ns/action at frequency are 30 MHz. The fuzzy logic tune digital PID controller based on FPGA was verified by control model of level control system which can control level into model are correctly and rapidly. Finally, this design use small size circuit board and very faster than computer and microcontroller.

  • PDF

Articulation error of children with adenoid hypertrophy

  • Eom, Tae-Hoon;Jang, Eun-Sil;Kim, Young-Hoon;Chung, Seung-Yun;Lee, In-Goo
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.7
    • /
    • pp.323-328
    • /
    • 2014
  • Purpose: Adenoid hypertrophy is a physical alteration that may affect speech, and a speech disorder can have other negative effects on a child's life. Airway obstruction leads to constricted oral breathing and causes postural alterations of several oro-facial structures, including the mouth, tongue, and hyoid bone. The postural modifications may affect several aspects of speech production. Methods: In this study, we compared articulation errors in 19 children with adenoid hypertrophy (subject group) to those of 33 children with functional articulation disorders independent of anatomical problems (control group). Results: The mean age of the subject group was significantly higher (P=0.016). Substitution was more frequent in the subject group (P=0.003; odds ratio [OR], 1.80; 95% confidence interval [CI], 1.23- 2.62), while omission was less frequent (P<0.001; OR, 0.43; 95% CI, 0.27-0.67). Articulation errors were significantly less frequent in the palatal affricative in the subject group (P=0.047; OR, 0.25; 95% CI, 0.07-0.92). The number of articulation errors in other consonants was not different between the two groups. Nasalization and aspiration were significantly more frequent in the subject group (P=0.007 and 0.014; OR, 14.77 and 0.014; 95% CI, [1.62-135.04] and NA, respectively). Otherwise, there were no differences between the two groups. Conclusion: We identified the characteristics of articulation errors in children with adenoid hypertrophy, but our data did not show the relationship between adenoid hypertrophy and oral motor function that has been observed in previous studies. The association between adenoid hypertrophy and oral motor function remains doubtful.

Algorithm for Predicting Functionally Equivalent Proteins from BLAST and HMMER Searches

  • Yu, Dong Su;Lee, Dae-Hee;Kim, Seong Keun;Lee, Choong Hoon;Song, Ju Yeon;Kong, Eun Bae;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.8
    • /
    • pp.1054-1058
    • /
    • 2012
  • In order to predict biologically significant attributes such as function from protein sequences, searching against large databases for homologous proteins is a common practice. In particular, BLAST and HMMER are widely used in a variety of biological fields. However, sequence-homologous proteins determined by BLAST and proteins having the same domains predicted by HMMER are not always functionally equivalent, even though their sequences are aligning with high similarity. Thus, accurate assignment of functionally equivalent proteins from aligned sequences remains a challenge in bioinformatics. We have developed the FEP-BH algorithm to predict functionally equivalent proteins from protein-protein pairs identified by BLAST and from protein-domain pairs predicted by HMMER. When examined against domain classes of the Pfam-A seed database, FEP-BH showed 71.53% accuracy, whereas BLAST and HMMER were 57.72% and 36.62%, respectively. We expect that the FEP-BH algorithm will be effective in predicting functionally equivalent proteins from BLAST and HMMER outputs and will also suit biologists who want to search out functionally equivalent proteins from among sequence-homologous proteins.

Design of 3-Dimensional Cross-Lattice Signal Constellations with Increased Compactness (조밀도가 증가된 3차원 십자격자형 신호성상도의 설계)

  • Li, Shuang;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.715-720
    • /
    • 2016
  • In this paper, a method to design 3-dimensional (3-D) cross-lattice signal constellations with increased compactness is presented and analyzed. Here, the symbols located at the outermost sides in the conventional lattice constellation are moved symmetrically to fill in empty sides and sunken corners. While the minimum Euclidean distance (MED) among adjacent symbols remains unchanged, the presented cross-lattice constellations have 3~5% reduced average power and upto 25% reduced total volume as compared with the conventional ones. Due to the increase compactness, average power of the new 3-D constellations is lower than that of the conventional ones. As a result, computer simulation verifies that the presented cross-lattice constellations can improve symbol error performance of a digital transmission system about 0.4 [dB]. Hence, the proposed 3-D cross-lattice constellations are appropriate for low-power and high-quality digital communication systems.

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.