• Title/Summary/Keyword: error propagation

검색결과 1,011건 처리시간 0.464초

은닉층 뉴우런 추가에 의한 역전파 학습 알고리즘 (A Modified Error Back Propagation Algorithm Adding Neurons to Hidden Layer)

  • 백준호;김유신;손경식
    • 전자공학회논문지B
    • /
    • 제29B권4호
    • /
    • pp.58-65
    • /
    • 1992
  • In this paper new back propagation algorithm which adds neurons to hidden layer is proposed. this proposed algorithm is applied to the pattern recognition of written number coupled with back propagation algorithm through omitting redundant learning. Learning rate and recognition rate of the proposed algorithm are compared with those of the conventional back propagation algorithm and the back propagation through omitting redundant learning. The learning rate of proposed algorithm is 4 times as fast as the conventional back propagation algorithm and 2 times as fast as the back propagation through omitting redundant learning. The recognition rate is 96.2% in case of the conventional back propagation algorithm, 96.5% in case of the back propagation through omitting redundant learning and 97.4% in the proposed algorithm.

  • PDF

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • 제34권2호
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.

Self-Relaxation for Multilayer Perceptron

  • Liou, Cheng-Yuan;Chen, Hwann-Txong
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.113-117
    • /
    • 1998
  • We propose a way to show the inherent learning complexity for the multilayer perceptron. We display the solution space and the error surfaces on the input space of a single neuron with two inputs. The evolution of its weights will follow one of the two error surfaces. We observe that when we use the back-propagation(BP) learning algorithm (1), the wight cam not jump to the lower error surface due to the implicit continuity constraint on the changes of weight. The self-relaxation approach is to explicity find out the best combination of all neurons' two error surfaces. The time complexity of training a multilayer perceptron by self-relaxationis exponential to the number of neurons.

  • PDF

미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법 (Speeding-up for error back-propagation algorithm using micro-genetic algorithms)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

An Adaptive Control for the Propagation Errors Incurred by DCT Coefficient-Dropping Transcoder

  • Kim, Jin-Soo;Kim, Jae-Gon;Seo, Kwang-Deok;Yun, Mong-Han
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.559-568
    • /
    • 2007
  • This paper presents a new distortion control scheme with a simple estimation model for the propagation errors incurred by dropping some parts of the bitstream in a frame dropping-coefficient dropping (FD-CD) transcoder. The primary goal of this paper is to facilitate bit-rate conversions and rate-distortion controls in the compressed domain without introducing a full decoding and reencoding system in the pixel domain. First, the error propagation behavior over several frame sequences due to coefficient dropping is investigated on the basis of statistical and empirical properties. Then, such properties are used to develop a simple estimation model for the CD distortion accounting for the characteristics of the underlying coded-frame. Finally, the proposed estimation model allows us to determine the amount of coefficient dropping and to effectively allocate rate-distortions into coded-frames. Experimental results show that the proposed estimation model accurately describes the characteristics of propagation errors adaptively in the compressed domain and can be easily applied to distortion control over different kinds of video sequences.

  • PDF

Magnetic Flux Leakage (MFL) based Defect Characterization of Steam Generator Tubes using Artificial Neural Networks

  • Daniel, Jackson;Abudhahir, A.;Paulin, J. Janet
    • Journal of Magnetics
    • /
    • 제22권1호
    • /
    • pp.34-42
    • /
    • 2017
  • Material defects in the Steam Generator Tubes (SGT) of sodium cooled fast breeder reactor (PFBR) can lead to leakage of water into sodium. The water and sodium reaction will lead to major accidents. Therefore, the examination of steam generator tubes for the early detection of defects is an important requirement for safety and economic considerations. In this work, the Magnetic Flux Leakage (MFL) based Non Destructive Testing (NDT) technique is used to perform the defect detection process. The rectangular notch defects on the outer surface of steam generator tubes are modeled using COMSOL multiphysics 4.3a software. The obtained MFL images are de-noised to improve the integrity of flaw related information. Grey Level Co-occurrence Matrix (GLCM) features are extracted from MFL images and taken as input parameter to train the neural network. A comparative study on characterization have been carried out using feed-forward back propagation (FFBP) and cascade-forward back propagation (CFBP) algorithms. The results of both algorithms are evaluated with Mean Square Error (MSE) as a prediction performance measure. The average percentage error for length, depth and width are also computed. The result shows that the feed-forward back propagation network model performs better in characterizing the defects.

오류 역전파 알고리즘의 n차 크로스-엔트로피 오차신호에 대한 민감성 제거를 위한 가변 학습률 및 제한된 오차신호 (Adaptive Learning Rate and Limited Error Signal to Reduce the Sensitivity of Error Back-Propagation Algorithm on the n-th Order Cross-Entropy Error)

  • 오상훈;이수영
    • 전자공학회논문지C
    • /
    • 제35C권6호
    • /
    • pp.67-75
    • /
    • 1998
  • 다층퍼셉트론의 학습에서 나타나는 출력노드의 부적절한 포화를 해결하기 위해서 n차 크로스-엔트로피 오차함수가 제안되었으나, 이 오차함수를 이용한 학습성능은 오차함수의 차수에 민감하여 적절한 차수를 결정해야 하는 문제점이 있다. 이 논문에서는, 학습의 진행에 따라 학습률을 가변시키는 새로운 방법을 제시하여 다층퍼셉트론의 학습성능이 n차 크로스-엔트로피 오차함수의 차수에 덜 민감하도록 한다. 또한, 가변학습률이 매우 커지는 경우에 학습이 불안정해지는 것을 방지하기 위해서 오차신호의 크기를 제한하는 방법을 제시한다. 마지막으로, 필기체 숫자 인식 문제와 갑상선 진단 문제의 시뮬레이션으로 제안한 방법의 효용성을 검증한다.

  • PDF

이동통신 환경에서 적응상태 축약 심볼열 추정 수신기 (The adaptive reduced state sequence estimation receiver for multipath fading channels)

  • 이영조;권성락;문태현;강창언
    • 한국통신학회논문지
    • /
    • 제22권7호
    • /
    • pp.1468-1476
    • /
    • 1997
  • 상태축약심볼열추정(RSSE: Reduced State Sequence Estimation) 수신기는 비터비 복호기와 채널 추정기로 구성된다. 이동통신과 같이 채널이 변하는 환경에서는 적응 채널추정기(adaptive channel estimator)로 채널의 변화를 계속적으로 추정해야 한다. 일반적으로 사용되는 채널 추정기는 임시결정된 비터비 복호기의 출력을 사용하여 채널을 추정 하는데, 비터비 복호기에서 잘못된 결정을 내릴 경우 이로 인해 오류전파(error propagation)가 발생할 수있다. 본 논문에서는 좀더 정확한 채널 추정과 오류전파를 막기 위해 경로 메모리를 사용하는 새로운 채널추정기를 사용한다. 이 채널 추정기는 비터비 복호기의 여러 경로중에서 가장 작은 경로를 선택하여 그 경로상의 신호를 이용하여 채널 추정을 행한다. 그리고 채널 추정기의 적응 알고리듬으로서 LMS(Least Mean Square)알고리듬과 Recursive Least Square(RLS) 알고리듬을 사용하여 비교한다. 실험 결과를 통해 제안된 채널 추정기를 사용하는 RSSE 수신기가 기존의 채널 추정기를 사용하는 RSSE 수신기에 비해 더 나은 성능을 나타내는 것을 볼 수있으며, 페이딩이 존재하는 이동통신 환경에서는 LMS 알고리듬이 적합하지 않음을 알 수있다.

  • PDF

컬러정보와 오류역전파 알고리즘을 이용한 교통표지판 인식 (Traffic Sign Recognition Using Color Information and Error Back Propagation Algorithm)

  • 방걸원;강대욱;조완현
    • 정보처리학회논문지D
    • /
    • 제14D권7호
    • /
    • pp.809-818
    • /
    • 2007
  • 본 논문에서는 컬러정보를 이용하여 교통표지판 영역을 추출하고, 추출된 이미지의 인식을 위해 오류 역전파 학습알고리즘을 적용한 교통표지판 인식시스템을 제안한다. 제안된 방법은 교통표지판의 컬러를 분석하여 영상에서 교통표지판의 후보영역을 추출한다. 후보영역을 추출하는 방법은 RGB 컬러 공간으로부터 YUV, YIQ, CMYK 컬러 공간이 가지는 특성을 이용한다. 형태처리는 교통표지판의 기하학적 특성을 이용하여 영역을 분할하고, 교통표지판 인식은 학습이 가능한 오류역전파 학습알고리즘을 이용하여 인식한다. 실험결과 제안된 시스템은 다양한 크기의 입력영상과 조명의 차이에 영향을 받지 않고 후보영역 추출과 인식에 우수한 성능이 입증되었다.

제한 최소 자승오차법 (The Constrained Least Mean Square Error Method)

  • 나희승;박영진
    • 소음진동
    • /
    • 제4권1호
    • /
    • pp.59-69
    • /
    • 1994
  • A new LMS algorithm titled constrained LMS' is proposed for problems with constrained structure. The conventional LMS algorithm can not be used because it destroys the constrained structures of the weights or parameters. Proposed method uses error-back propagation, which is popular in training neural networks, for error minimization. The illustrative examplesare shown to demonstrate the applicability of the proposed algorithm.

  • PDF