Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.
IEMEK Journal of Embedded Systems and Applications
/
v.18
no.1
/
pp.31-40
/
2023
Recent advances in flash technologies, such as 3D processing and multileveling schemes, have successfully increased the flash capacity. Unfortunately, these technology advances significantly degrade flash's reliability due to a smaller cell geometry and a finer-grained cell state control. In this paper, we propose an asymmetric BER-aware reliability optimization technique (aBARO), new flash optimization that improves the flash reliability. To this end, we first reveal that bit errors of 3D NAND flash memory are highly skewed among flash cell states. The proposed aBARO exploits the unique per-state error model in flash cell states by selecting the most error-prone flash states and by forming narrow threshold voltage distributions (for the selected states only). Furthermore, aBARO is applied only when the program time (tPROG) gets shorter when a flash cell becomes aging, thereby keeping the program latency of storage systems unchanged. Our experimental results with real 3D MLC and TLC flash devices show that aBARO can effectively improve flash reliability by mitigating a significant number of bit errors. In addition, aBARO can also reduce the read latency by 40%, on average, by suppressing the read retries.
Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.
Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
Structural Engineering and Mechanics
/
v.84
no.4
/
pp.489-502
/
2022
This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.
A on-line optimization scheme based on model in a binary distillation process is proposed. A reduced-order model utilized the concept of collocation is used as a process model and the recursive prediction error method is employed to identify the reduced-order model. The concentrations of end products are controlled by nonlinear adaptive predictive control algorithm. The objective function is constructed to find optimum operate condition for saving utility cost. The proposed optimization is scheme is tested through simulation studies in 13-staged water-methanol distillation column.
The Journal of Korean Institute of Communications and Information Sciences
/
v.33
no.11B
/
pp.961-967
/
2008
Congestion control is one of major mechanisms to avoid dropped packets. Many researchers use optimization theories to find an efficient way to reduce congestion in networks, but they do not consider robustness that may lead to unstable network utilities. This paper proposes a new methodology in order to solve a congestion control problem for wired networks by using a robust design principle. In our particular numerical example, the proposed method provides robust solutions that guarantee high and stable network utilities.
Proceedings of the Korea Society for Energy Engineering kosee Conference
/
1994.11a
/
pp.146-149
/
1994
A nonlinear dynamic optimization has been performed for reactor power control system of CANDU 6 nuclear power plant considering xenon, fuel and moderator temperature feedback effects. Integral-of-Time-multiplied Absolute-Error (ITAE) criterion has been used as a performance index of the system behavior. Optimum controller gain are found by searching algorithm of Sequential Quadratic Programming (SQP). System models are referenced from most recent literatures. Signal flow network construction and optimization have been done by using commercial computer software package.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.2
/
pp.405-423
/
2022
The distance vector-hop (DV-Hop) is one of the emblematic algorithms that use node connectivity for locating, which often accompanies by a large positioning error. To reduce positioning error, the bio-inspired algorithm and weight optimization model are introduced to address positioning. Most scholars argue that the weight value decreases as the hop counts increases. However, this point of view ignores the intrinsic relationship between the error and weight. To address this issue, this paper constructs the relationship model between error and hop counts based on actual communication characteristics of sensor nodes in wireless sensor network. Additionally, we prove that the error converges to 1/6CR when the hop count increase and tendency to infinity. Finally, this paper presents a modified error-oriented weight positioning model, and implements it with genetic algorithm. The experimental results demonstrate excellent robustness and error removal.
Kim, Seong Hyeon;Ko, Deuk Won;Lee, Tae Hyun;Kim, Dong Hwan;Kim, Byoung Soo
Journal of Aerospace System Engineering
/
v.15
no.5
/
pp.8-15
/
2021
This paper describes a design method using an optimization technique to satisfy the longitudinal handling quality of high maneuverable jet aircraft. The dynamic inversion technique was applied to the target aircraft, and the control gain optimization satisfied the longitudinal short-period handling quality, however, the stability margin was not considered. If the stability margin is not satisfied, it is necessary to directly readjust the gains through trial and error methods for improvement. To improve this, an additional compensator and an optimization constraint were added to the control gain optimization procedure. In addition, the degree of handling quality satisfaction with the optimization result was reevaluated, and additional control evaluation criteria for the convergence of the time response and the steady state error that the flight performance requirement set as the optimization constraint cannot be reflected, and the results are described.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.