• Title/Summary/Keyword: error correction codes

Search Result 149, Processing Time 0.023 seconds

Bit-selective Forward Error Correction for Digital Mobile Communications (디지털 이동통신을 위한 비트 선택적 에러정정부호)

  • Yang, Kyeong-Cheol;Lee, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.198-202
    • /
    • 1988
  • In digital mobile communications received speech data are affected by burst errors as well as random errors. To overcome these errors we propose a bit-selective forward error correction scheme for the speech data which is sub-band coded at 13 kbps and transmitted over a 16 kbps channel. For a few error correcting codes the signal-to-noise ratio of error-corrected speech is obtained and compared through the simulation of mobile communication channels.

  • PDF

Design of RCNC(Random Connection Node Convolutional) Code with Security Property (비화 특성을 가진 RCNC(Random Connection Node Convolutional) 부호 기법의 설계)

  • Kong, Hyung-Yun;Cho, Sang-Bock;Lee, Chang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3944-3951
    • /
    • 2000
  • In this paper, we propose the new FEC(Forward Error Correction) code method, so called RCNC(Random Connection Node Convolutional) code with security property. Recently, many wireless communication systems, which can prouide integrated semices of various media types and hil rales, are required to haue the ability of secreting information and error correclion. This code system is a kind qf conuolulional code, but it Ius various code formats as each node is connected differently. And systems hy using RCNC codes haue all. ability of error correction as well as information protection. We describe the principle of operating RCNC codes, including operation examples. In this paper, we also show the peiformance of BER(Bit Error Rate) and verify authority of network system with computer simulation.

  • PDF

Quantum Error Correction Code Scheme used for Homomorphic Encryption like Quantum Computation (동형암호적 양자계산이 가능한 양자오류정정부호 기법)

  • Sohn, Il Kwon;Lee, Jonghyun;Lee, Wonhyuk;Seok, Woojin;Heo, Jun
    • Convergence Security Journal
    • /
    • v.19 no.3
    • /
    • pp.61-70
    • /
    • 2019
  • Recently, developments on quantum computers and cloud computing have been actively conducted. Quantum computers have been known to show tremendous computing power and Cloud computing has high accessibility for information and low cost. For quantum computers, quantum error correcting codes are essential. Similarly, cloud computing requires homomorphic encryption to ensure security. These two techniques, which are used for different purposes, are based on similar assumptions. Then, there have been studies to construct quantum homomorphic encryption based on quantum error correction code. Therefore, in this paper, we propose a scheme which can process the homomorphic encryption like quantum computation by modifying the QECCs. Conventional quantum homomorphic encryption schemes based on quantum error correcting codes does not have error correction capability. However, using the proposed scheme, it is possible to process the homomorphic encryption like quantum computation and correct the errors during computation and storage of quantum information unlike the homogeneous encryption scheme with quantum error correction code.

Decoding Performance and Complexity of Reed-Muller Codes in TETRA (TETRA RM 부호의 복호 알고리즘 비교)

  • Park, Gi-Yoon;Kim, Dae-Ho;Oh, Wang-Rok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.162-164
    • /
    • 2010
  • Terrestrial trunked radio (TETRA) standard specifies shortened Reed-Muller (RM) codes as forward error correction means for control signals. In this paper, we compare decoding algorithms for RM codes in TETRA, in terms of performance and complexity trade-off. Belief propagation and majority logic decoding algorithms are selected for comparison.

  • PDF

EM Algorithm for Designing Soft-Decision Binary Error Correction Codes of MLC NAND Flash Memory (멀티 레벨 낸드 플래시 메모리용 연판정 복호를 수행하는 이진 ECC 설계를 위한 EM 알고리즘)

  • Kim, Sung-Rae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.127-139
    • /
    • 2014
  • In this paper, we present two signal processing techniques for designing binary error correction codes for Multi-Level Cell(MLC) NAND flash memory. MLC NAND flash memory saves the non-binary symbol at each cell and shows asymmetric channel LLR l-density which makes it difficult to design soft-decision binary error correction codes such as LDPC codes and Polar codes. Therefore, we apply density mirroring and EM algorithm for approximating the MLC NAND flash memory channel to the binary-input memoryless channel. The density mirroring processes channel LLRs to satisfy roughly all-zero codeword assumption, and then EM algorithm is applied to l-density after density mirroring for approximating it to mixture of symmetric Gaussian densities. These two signal processing techniques make it possible to use conventional code design algorithms, such as density evolution and EXIT chart, for MLC NAND flash memory channel.

Design and performance analysis of turbo codes employing the variable-sized interleaver (가변 크기 인터리버를 사용한 turbo 부호의 설계와 성능 해석)

  • Lee, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2A
    • /
    • pp.86-95
    • /
    • 2003
  • With the advent of future mobile communication systems, the wireless transmission of the huge amount of multimedia data over the error-prone multipath fading channel has to overcome the inherent sensitivity to channel errors. To alleviate the effect of the channel errors, hosts of techniques based on the forward error correction(FEC) has been proposed at the cost of overhead rate. Among the FEC techniques, turbo code, whose performance has been shown to be very close to the Shannon limit, can be classified as a block-based error correction code. In this paper, considering the variable packet size of the multimedia data, we analyzed turbo codes employing the variable-sized interleaver. The effect of the various parameters on the BER performance is analyzed. We show that the turbo codes can be used as efficient error correction codes of multimedia data.

Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing (결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향)

  • E.Y. Cho;J.H. On;C.Y. Kim;G. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.

Multipath Fading Channel Characterization and Performances of Forward Error Correction Codes in Very Shallow Water (극 천해 다중경로 페이딩 채널 특성과 전방오류 정정 코드의 성능)

  • Bae, Minja;Xue, Dandan;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2247-2255
    • /
    • 2015
  • In very shallow water acoustic communication channel, underwater acoustic (UWA) communication signal is observed as frequency selective fading signal due to time-varying multipath. This induces a time and frequency dependent inter-symbol-interference (ISI) and degrades the UWA system performance. There is no study about how the performances of the error correction codes are related to a multipath fading statistics in very shallow water. In this study, the characteristics of very shallow water multipath fading channel is analyzed and the performances of two different forward error correction (FEC) codes are compared. The convolution code (CC) and Reed-Solomon (RS) code are adopted. Sea experimental results show that RS code is better choice than CC in frequency selective channel with fading.

Efficient Implementation of Single Error Correction and Double Error Detection Code with Check Bit Pre-computation for Memories

  • Cha, Sanguhn;Yoon, Hongil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.418-425
    • /
    • 2012
  • In this paper, efficient implementation of error correction code (ECC) processing circuits based on single error correction and double error detection (SEC-DED) code with check bit pre-computation is proposed for memories. During the write operation of memory, check bit pre-computation eliminates the overall bits computation required to detect a double error, thereby reducing the complexity of the ECC processing circuits. In order to implement the ECC processing circuits using the check bit pre-computation more efficiently, the proper SEC-DED codes are proposed. The H-matrix of the proposed SEC-DED code is the same as that of the odd-weight-column code during the write operation and is designed by replacing 0's with 1's at the last row of the H-matrix of the odd-weight-column code during the read operation. When compared with a conventional implementation utilizing the odd-weight- column code, the implementation based on the proposed SEC-DED code with check bit pre-computation achieves reductions in the number of gates, latency, and power consumption of the ECC processing circuits by up to 9.3%, 18.4%, and 14.1% for 64 data bits in a word.

Performance Analysis on Error Correction Scheme for Wireless Sensor Network over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun;Ryu, Jeong-Tak;Park, Se-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2006
  • In this paper, we study a problem of providing reliable data transmission in wireless sensor network(WSN). A system with forward error correction9FEC) can provide an objective reliability while using less transmission power than a system without FEC. We propose the use of LDPC codes of various code rate (0.53, 0.81, 0.91) of FEC for WSN. Node-node-node interference is considered in the simulation in addition to AWGN in the channel. It is shown that the rate of 0.91 LDPC coded system obtained 7dB gain in signal to noise ratio over a system without FEC.

  • PDF