• Title/Summary/Keyword: error bounds

Search Result 208, Processing Time 0.018 seconds

Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach (Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Han
    • Journal of Wetlands Research
    • /
    • v.11 no.1
    • /
    • pp.49-64
    • /
    • 2009
  • Rainfall-runoff models are used for efficient management, distribution, planning, and design of water resources in accordance with the process of hydrologic cycle. The models simplify the transition of rainfall to runoff as rainfall through different processes including evaporation, transpiration, interception, and infiltration. As the models simplify complex physical processes, gaps between the models and actual rainfall events exist. For more accurate simulation, appropriate models that suit analysis goals are selected and reliable long-term hydrological data are collected. However, uncertainty is inherent in models. It is therefore necessary to evaluate reliability of simulation results from models. A number of studies have evaluated uncertainty ingrained in rainfall-runoff models. In this paper, Meta-Gaussian method proposed by Montanari and Brath(2004) was used to assess uncertainty of simulation outputs from rainfall-runoff models. The model, which estimates upper and lower bounds of the confidence interval from probabilistic distribution of a model's error, can quantify global uncertainty of hydrological models. In this paper, Meta-Gaussian method was applied to analyze uncertainty of simulated runoff outputs from $Vflo^{TM}$, a physically-based distribution model and HEC-HMS model, a conceptual lumped model.

  • PDF

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Development of Modification Coefficient for Nonlinear Single Degree of Freedom System Considering Plasticity Range for Structures Subjected to Blast Loads (폭발 하중을 받는 구조물의 소성 범위를 고려한 비선형 단자유도 시스템의 수정계수 개발)

  • Tae-Hun Lim;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, a modification coefficient for equivalent single degree of freedom (SDOF), considering the plasticity range of the member subjected to shock wave type of blast load, was developed. The modification coefficient for the equivalent SDOF was determined through comparison with the analysis of a multi-degree of freedom (MDOF) system. The parameters influencing the equivalent SDOF system analysis were chosen as the boundary conditions of the member and the ratio of the duration of blast load to the natural period of the member. The modification coefficient was calculated based on the elastic load-mass transformation factor. The modification coefficient curve was derived using an elliptical equation to ensure it exists between the upper and lower parameter bounds. Using the modification coefficient on examples with varying cross sections and boundary conditions reduced the SDOF analysis error rate from 15% to 3%. This study shows that using the modification coefficient significantly improves the accuracy of SDOF analysis. The modification coefficient proposed in this study can be used for blast analysis.

A Statistical Methodology to Estimate the Economical Replacement Time of Water Pipes (상수관로의 경제적 교체시기를 산정하기 위한 통계적 방법론)

  • Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.6
    • /
    • pp.457-464
    • /
    • 2009
  • This paper proposes methodologies for analyzing the accuracy of the proportional hazards model in predicting consecutive break times of water mains and estimating the time interval for economical water main replacement. By using the survival functions that are based on the proportional hazards models a criterion for the prediction of the consecutive pipe breaks is determined so that the prediction errors are minimized. The criterion to predict pipe break times are determined as the survival probability of 0.70 and only the models for the third through the seventh break are analyzed to be reliable for predicting break times for the case study pipes. Subsequently, the criterion and the estimated lower and upper bound survival functions of consecutive breaks are used in predicting the lower and upper bounds of the 95% confidence interval of future break times of an example water main. Two General Pipe Break Prediction Models(GPBMs) are estimated for an example pipe using the two series of recorded and predicted lower and upper bound break times. The threshold break rate is coupled with the two GPBMs and solved for time to obtain the economical replacement time interval.

A Study on Life Cycle Cost According to Bridge Condition (교량 상태에 따른 생애주기비용 영향 분석)

  • Park, Jun-Yong;Lee, Keesei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.802-809
    • /
    • 2021
  • To cope with the increasing maintenance costs due to aging, the maintenance cost was evaluated from the perspective of asset management. The maintenance cost can be predicted based on the condition of the bridge, and the life cycle cost is used as an index. In general, the condition of a bridge has a wide distribution characteristic depending on the deterioration, load, and material characteristics. In this paper, to evaluate the effect of the bridge conditions on the life cycle cost, condition prediction models were constructed considering the service life, deterioration rate, and inspection error, which are the main variables of the bridge condition and life cycle cost calculation. In addition, condition prediction models were constructed based on the distribution of the health index to estimate the upper and lower bounds of the life cycle costs that can occur in individual bridges. Life cycle cost analysis showed that the life cycle cost differed significantly according to the condition of the bridge. Accordingly, research will be needed to increase the reliability of predicting the life cycle cost of individual bridges.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Comparison of Treatment Planning System(TPS) and actual Measurement on the surface under the electron beam therapy with bolus (전자선 치료 시 Bolus를 적용한 경우 표면선량의 Treatment Planning System(TPS) 계산 값과 실제 측정값의 비교)

  • Kim, Byeong Soo;Park, Ju Young;Park, Byoung Suk;Song, Yong Min;Park, Byung Soo;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Purpose : If electron, chosen for superficial oncotherapy, was applied with bolus, it could work as an important factor to a therapy result by showing a drastic change in surface dose. Hence the calculation value and the actual measurement value of surface dose of Treatment Planning System (TPS) according to four variables influencing surface dose when using bolus on an electron therapy were compared and analyzed in this paper. Materials and Methods : Four variables which frequently occur during the actual therapies (A: bolus thickness - 3, 5, 10 mm, B: field size - $6{\time}6$, $10{\time}10$, $15{\time}15cm2$, C: energy - 6, 9, 12 MeV, D: gantry angle - $0^{\circ}$, $15^{\circ}$) were set to compare the actual measurement value with TPS(Pinnacle 9.2, philips, USA). A computed tomography (lightspeed ultra 16, General Electric, USA) was performed using 16 cm-thick solid water phantom without bolus and total 54 beams where A, B, C, and D were combined after creating 3, 5 and 10 mm bolus on TPS were planned for a therapy. At this moment SSD 100 cm, 300 MU was investigated and measured twice repeatedly by placing it on iso-center by using EBT3 film(International Specialty Products, NJ, USA) to compare and analyze the actual measurement value and TPS. Measured film was analyzed with each average value and standard deviation value using digital flat bed scanner (Expression 10000XL, EPSON, USA) and dose density analyzing system (Complete Version 6.1, RIT, USA). Results : For the values according to the thickness of bolus, the actual measured values for 3, 5 and 10 mm were 101.41%, 99.58% and 101.28% higher respectively than the calculation values of TPS and the standard deviations were 0.0219, 0.0115 and 0.0190 respectively. The actual values according to the field size were $6{\time}6$, $10{\time}10$ and $15{\time}15cm2$ which were 99.63%, 101.40% and 101.24% higher respectively than the calculation values and the standard deviations were 0.0138, 0.0176 and 0.0220. The values according to energy were 6, 9, and 12 MeV which were 99.72%, 100.60% and 101.96% higher respectively and the standard deviations were 0.0200, 0.0160 and 0.0164. The actual measurement value according to beam angle were measured 100.45% and 101.07% higher at $0^{\circ}$ and $15^{\circ}$ respectively and standard deviations were 0.0199 and 0.0190 so they were measured 0.62% higher at $15^{\circ}$ than $0^{\circ}$. Conclusion : As a result of analyzing the calculation value of TPS and measurement value according to the used variables in this paper, the values calculated with TPS on 5 mm bolus, $6{\time}6cm2$ field size and low-energy electron at $0^{\circ}$ gantry angle were closer to the measured values, however, it showed a modest difference within the error bound of maximum 2%. If it was beyond the bounds of variables selected in this paper using electron and bolus simultaneously, the actual measurement value could differ from TPS according to each variable, therefore QA for the accurate surface dose would have to be performed.