• 제목/요약/키워드: equivariant homotopy

검색결과 4건 처리시간 0.018초

EQUIVARIANT HOMOTOPY EQUIVALENCES AND A FORGETFUL MAP

  • Tsukiyama, Kouzou
    • 대한수학회보
    • /
    • 제36권4호
    • /
    • pp.649-654
    • /
    • 1999
  • We consider the forgetful map from the group of equivariant self equivalences to the group of non-equivariant self equivalences. A sufficient condition for this forgetful map being a monomorphism is obtained. Several examples are given.

  • PDF

The Universal Property of Inverse Semigroup Equivariant KK-theory

  • Burgstaller, Bernhard
    • Kyungpook Mathematical Journal
    • /
    • 제61권1호
    • /
    • pp.111-137
    • /
    • 2021
  • Higson proved that every homotopy invariant, stable and split exact functor from the category of C⁎-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting.

CLASSIFICATION OF EQUIVARIANT VECTOR BUNDLES OVER REAL PROJECTIVE PLANE

  • Kim, Min Kyu
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.319-335
    • /
    • 2011
  • We classify equivariant topoligical complex vector bundles over real projective plane under a compact Lie group (not necessarily effective) action. It is shown that nonequivariant Chern classes and isotropy representations at (at most) three points are sufficient to classify equivariant vector bundles over real projective plane except one case. To do it, we relate the problem to classification on two-sphere through the covering map because equivariant vector bundles over two-sphere have been already classified.

SEMIALGEBRAIC G CW COMPLEX STRUCTURE OF SEMIALGEBRAIC G SPACES

  • Park, Dae-Heui;Suh, Dong-Youp
    • 대한수학회지
    • /
    • 제35권2호
    • /
    • pp.371-386
    • /
    • 1998
  • Let G be a compact Lie group and M a semialgebraic G space in some orthogonal representation space of G. We prove that if G is finite then M has an equivariant semialgebraic triangulation. Moreover this triangulation is unique. When G is not finite we show that M has a semialgebraic G CW complex structure, and this structure is unique. As a consequence compact semialgebraic G space has an equivariant simple homotopy type.

  • PDF