• Title/Summary/Keyword: equivariant K-theory

Search Result 7, Processing Time 0.023 seconds

EQUIVARIANT CROSSED MODULES AND COHOMOLOGY OF GROUPS WITH OPERATORS

  • CUC, PHAM THI;QUANG, NGUYEN TIEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1077-1095
    • /
    • 2015
  • In this paper we study equivariant crossed modules in its link with strict graded categorical groups. The resulting Schreier theory for equivariant group extensions of the type of an equivariant crossed module generalizes both the theory of group extensions of the type of a crossed module and the one of equivariant group extensions.

A NOTE ON S1-EQUIVARIANT COHOMOLOGY THEORY

  • Lee, Doobeum
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.185-192
    • /
    • 1998
  • We briefly review the $S^1$-equivariant cohomology theory of a finite dimensional compact oriented $S^1$-manifold and extend our discussion in infinite dimensional case.

  • PDF

EQUIARIANT K-GROUPS OF SPHERES WITH INVOLUTIONS

  • Cho, Jin-Hwan;Mikiya Masuda
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.645-655
    • /
    • 2000
  • We calculate the R(G)-algebra structure on the reduced equivariant K-groups of two-dimensional spheres on which a compact Lie group G acts as a reflection. In particular, the reduced equivariant K-groups are trivial if G is abelian, which shows that the previous Y. Yang's calculation in [8] is incorrect.

  • PDF

EQUIVARIANT HOMOTOPY EQUIVALENCES AND A FORGETFUL MAP

  • Tsukiyama, Kouzou
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.649-654
    • /
    • 1999
  • We consider the forgetful map from the group of equivariant self equivalences to the group of non-equivariant self equivalences. A sufficient condition for this forgetful map being a monomorphism is obtained. Several examples are given.

  • PDF

ON DIFFERENTIAL INVARIANTS OF HYPERPLANE SYSTEMS ON NONDEGENERATE EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES

  • HONG, JAEHYUN
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.253-267
    • /
    • 2015
  • Given a complex submanifoldM of the projective space $\mathbb{P}$(T), the hyperplane system R on M characterizes the projective embedding of M into $\mathbb{P}$(T) in the following sense: for any two nondegenerate complex submanifolds $M{\subset}\mathbb{P}$(T) and $M^{\prime}{\subset}\mathbb{P}$(T'), there is a projective linear transformation that sends an open subset of M onto an open subset of M' if and only if (M,R) is locally equivalent to (M', R'). Se-ashi developed a theory for the differential invariants of these types of systems of linear differential equations. In particular, the theory applies to systems of linear differential equations that have symbols equivalent to the hyperplane systems on nondegenerate equivariant embeddings of compact Hermitian symmetric spaces. In this paper, we extend this result to hyperplane systems on nondegenerate equivariant embeddings of homogeneous spaces of the first kind.

EQUIVARIANT ALGEBRAIC APPROXIMATIONS OF G MAPS

  • Suh, Dong-Youp
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.949-961
    • /
    • 1995
  • Let f be a smooth G map from a nonsingular real algebraic G variety to an equivariant Grassmann variety. We use some G vector bundle theory to find a necessary and sufficient condition to approximate f by an entire rational G map. As an application we algebraically approximate a smooth G map between G spheres when G is an abelian group.

  • PDF

STABLE CLASS OF EQUIVARIANT ALGEBRAIC VECTOR BUNDLES OVER REPRESENTATIONS

  • Masuda, Mikiya
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.331-349
    • /
    • 2002
  • Let G be a reductive algebraic group and let B, F be G-modules. We denote by $VEC_{G}$ (B, F) the set of isomorphism classes in algebraic G-vector bundles over B with F as the fiber over the origin of B. Schwarz (or Karft-Schwarz) shows that $VEC_{G}$ (B, F) admits an abelian group structure when dim B∥G = 1. In this paper, we introduce a stable functor $VEC_{G}$ (B, $F^{\chi}$) and prove that it is an abelian group for any G-module B. We also show that this stable functor will have nice properties.