• Title/Summary/Keyword: equivalent load for element stiffness

Search Result 43, Processing Time 0.024 seconds

Improvement of Newton-Raphson Iteration Using ELS (강성등가하중을 이용한 Newton-Raphson Iteration 개선)

  • Kim, Chee-Kyeong;Hwang, Young-Chul
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.170-174
    • /
    • 2006
  • This paper presents a new nonlinear analysis algorithm which uses the equivalent nodal load for the element stiffness. The equivalent nodal load represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The nonlinear analysis of structures using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in each loading step. In this paper, the concept of nonlinear analysis using the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Definition and Application of Equivalent Load for Stiffness (강성등가하중의 정의와 응용)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.303-312
    • /
    • 2006
  • This paper presents the equivalent nodal load for the element stiffness which represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The reanalysis of structure using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in the reanalysis. In this paper, the concept of the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

Equivalent Static Analysis of Progressive Collapse Using Equivalent Load for Stiffness (강성등가하중을 이용한 등가정적 연쇄붕괴 해석)

  • Hwang, Young-Chul;Kim, Gye-Joong;Kim, Chee-Kyeong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.375-380
    • /
    • 2007
  • The goal of this paper is to develop a rational static method which consider efficiently the dynamic effect of the gravity load following sudden removal of element. For this goal this paper introduce the equivalent load for element stiffness which is a preceding research result and will develop equivalent static analysis which will be able to predict the maximum behavior considering dynamic effect. Some examples are provided to verify it. Equivalent static analysis is compared with the analysis method which is recommended by the GSA2003 guidelines and the time-history analysis which is the most accurate for dynamic behavior.

  • PDF

New Non-iterative Non-incremental Nonlinear Analysis (새로운 개념의 비반복적 비점증적 비선형해석)

  • Kim Chee-Kyeong;Hwang Young-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.514-519
    • /
    • 2006
  • This paper presents a new nonlinear analysis algorithm which uses the equivalent nodal load for the element stiffness. The equivalent nodal load represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The nonlinear analysis of structures using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in each loading step. In this paper, the concept of nonlinear analysis using the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

  • PDF

A new equivalent friction element for analysis of cable supported structures

  • Yan, Renzhang;Chen, Zhihua;Wang, Xiaodun;Liu, Hongbo;Xiao, Xiao
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.947-970
    • /
    • 2015
  • An equivalent friction element is proposed to simulate the friction in cable-strut joints. Equivalent stiffness matrixes and load vectors of the friction element are derived and are unified into patterns for FEM by defining a virtual node specially to store internal forces. Three approaches are described to verify the rationality of the new equivalent friction element: applying the new element in a cable-roller model, and numerical solutions match well with experimental results; applying the element in a continuous sliding cable model, and theoretical values, numerical and experimental results are compared; and the last is applying it in truss string structures, whose results indicate that there would be a great error if the cable of cable supported structures is simulated with discontinuous cable model which is usually adopted in traditional finite element analysis, and that the prestress loss resulted from the friction in cable-strut joints would have adverse effect on the mechanical performance of cable supported structures.

New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness (강성등가하중을 이용한 새로운 비선형해석 알고리즘)

  • Kim, Yeong-Min;Kim, Chee-Kyeong;Kim, Tae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.731-742
    • /
    • 2007
  • This paper presents a new nonlinear analysis algorithm, that is, adaptive Newton-Raphson iteration method, The presented algorithm is based on the existing Newton-Raphson method, and the concept of it can be summarized as calculating the equivalent load for stiffness(ELS) and adapting this to the initial global stiffness matrix which has already been calculated and saved in initial analysis and finally calculating the correction displacements for the nonlinear analysis, The key characteristics of the proposed algorithm is that it calculates the inverse matrix of the global stiffness matrix only once irresponsive of the number of load steps. The efficiency of the proposed algorithm depends on the ratio of the active Dofs - the Dofs which are directly connected to the members of which the element stiffness are changed - to the total Dofs, and based on this ratio by using the proposed algorithm as a complementary method to the existing algorithm the efficiency of the nonlinear analysis can be improved dramatically.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads (비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계)

  • Park Ki-Jong;Kwon Yong-Deok;Song Kee-Nam;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

Efficient Vibration Analysis of a Biaxial Hollow Slab Having Hexahedron Balls with Rounded Corner (모서리가 둥근 직육면체 중공볼을 가지는 2방향 중공슬래브의 효율적인 진동해석)

  • Park, Hyun-Jae;Kim, Min-Gyun;Lee, Dong-Guen;Park, Yong-Koo;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.421-428
    • /
    • 2009
  • In this study, an equivalent plate element model has been developed for an efficient vibration analysis of a biaxial hollow slab. To this end, equivalent mass and stiffness of equivalent plate element models corresponding to solid element models of example biaxial hollow slabs were calculated. To verify the efficiency and accuracy of the equivalent plate element models, structural analyses of example structures were performed. Analytical results showed that the natural frequencies of the equivalent plate element models were very close to those of the solid element models. Time history analyses of example biaxial hollow slabs subjected to walking load were conducted using the equivalent plate element models and the solid element models, and the results were compared. It could be seen based on the analytical results that the equivalent plate element model could provide very accurate results compared to the solid element model with significantly reduced analysis time.

Method for Determining Orthotropic Elastic Constants of Equivalent Shell Elements for the Boiler Membrane Wall of Coal-Fired Power Plants (석탄화력발전소 보일러의 멤브레인벽을 위한 등가 쉘요소의 직교이방성 탄성상수 결정 방법)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.77-85
    • /
    • 2020
  • In this study, we proposed a method to replace the solid finite element model of the boiler membrane wall for coal-fired power plants using an equivalent shell model. The application of a bending load to the membrane wall creates greater displacement at both ends of the central portion when compared with the middle when an isotropic elastic constant is used in the shell model. This is inconsistent with the results of the solid model where the central portion is uniformly deformed. Here, we presented a method to determine the orthotropic elastic constants of the shell model in terms of bending stiffness and vibration characteristics to solve this problem. Our analysis of the orthotropic shell model showed that the error ratio was 0.9% for the maximum displacement due to the bending load, 0.3% for the first natural frequency, and 2.5% for the second natural frequency when compared with the solid model. In conclusion, a complicated boiler membrane wall composed of a large number of pipes and fins can be replaced with a simple shell model that shows equivalent bending stiffness and vibration characteristics using our proposed method.