• Title/Summary/Keyword: equivalent depth

Search Result 348, Processing Time 0.023 seconds

Development of Wear Model concerning the Depth Behaviour

  • Kim, Hyung-Kyu;Lee, Young-Ho
    • KSTLE International Journal
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Wear model for predicting the vehaviour of a depth is considered in this paper. It is deduced from the energy and volume based wear models such as the Archard equation and the workrate model. A new parameter of the equivalent depth ($D_e$= wear volume /worn area) is considered for the wear model of a depth prediction. A concenpt of a dissipated shear energy density is accommodated for in the suggested models. It is found that $D_e$ can distinguish the worn area shape. A cubic of $D_e$($D_e^3$) gives a better linear regression with the volume than that of the maximmum depth $D_{max}e$($D_{max}^3$) does. Both $D_{max}$ and $D_e$ are used for the presently suggested depth-based wear model. As a result, a wear depth profile can be simulated by a model using $D_{max}$. Wear resistance from the concern of an overall depth can be identified by the wear coefficient of the model using $D_e$.

Central angle effect on connection behavior of steel box beam-to-circular column

  • Hwang, Won-Sup;Kim, Young-Pil;Yoon, Tae-Yang
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.531-547
    • /
    • 2009
  • This paper presents the experimental results on the strength behavior and failure modes of box beam-to-circular column connections in steel piers. Previous research introduced parameters such as joint central angles, extension of horizontal stiffeners, and use of equivalent web depth, which ignored strength behavior and failure modes of box beam-to-circular column connections. The use of equivalent web depth $d_2$ is not reasonable when central angle ${\alpha}$ is closer to $90^{\circ}$; therefore, a monotonic loading test has been performed for eight connection specimens. From the test, it is identified that the connection with the circular column is stronger than the connection with the box-sectioned substitution column. Also, the strength of the beam-to-column connections with horizontal stiffeners is higher than the one of the no column stiffeners. The concrete-filled effect of box beam-to-circular column connection is also investigated, and the experimental yield strength of the connection is compared with the theoretical one. Also, more a reasonable equivalent web depth is suggested. The failure modes of connection are clearly defined.

Contact Stress Evaluations for the Ball Groove of Weiss Type Constant velocity joint (Weiss형 등속조인트 볼 홈의 접촉응력평가)

  • 김완두;이순복
    • Tribology and Lubricants
    • /
    • v.5 no.2
    • /
    • pp.60-67
    • /
    • 1989
  • For the life prediction and fatigue failure prevention of the constant velocity joint, the maximum equivalent stress and its location in depth from the contact area are essential. These values give the fundamental information to determine the depth of the surface hardening treatment at the contact area. Contact stresses are evaluated at the surface and subsurface of the ball groove of the Weiss type constant velocity joint. The maximum contact pressure and the maximum equivalent stress are obtained. The effects of various parameters such as the radius of ball groove, friction coefficient, and residual stress are studied. The maximum equivalent stress and the maximum contact pressure increase as the radius of the ball grove increases. The location of the maximum equivalent stress moves toward surface as the friction coefficient increases. It was also found that the maximum equivalent stress becomes minimum when the compressire residual stress is about 0.16 times of the maximum contact pressure.

Effects of Specimen Length on Flexural Compressive Strength of Polymer Concrete (부재의 길이가 폴리머 콘크리트의 휨압축 강도에 미치는 영향)

  • 연규석;김남길;주명기;유근우;권윤환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.99-104
    • /
    • 2002
  • In this paper the influence or specimen length on flexural compressive strength and parameter or equivalent rectangular stress block of polymer concrete was evaluated. For this purpose, a series of C-shaped specimens subjected to eccentric compression were tested using four different length-to-depth ratios(from 1.0, 2.0, 3.0 and 4.0) of specimens with compressive strength of 1,020kgf/cm$^2$. Results indicate that for the region of h/c$\leq$3.0 the reduction in equivalent rectangular stress block depth and flexural compressive strength with increase of length-to-depth ratios was apparent but for the region of h/c$\geq$3.0 they were nearly constant. It means that for the region of h/c$\geq$3.0 effect of specimen length on equivalent rectangular stress block depth and flexural compressive strength was negligible. It was also founded that the effect of specimen length on v, a coefficient of strength, that was from 0.84 to 0.86 regardless of h/c was petty. Finally, predictive equation is, suggested by using modified law of effect of specimen length and results.

  • PDF

A Study on the Electrochemical Micromachining with Various Pulse Currents (전원특성에 따른 마이크로 전해가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.942-945
    • /
    • 2001
  • Pulse electrochemical micromachining offers significant improvements in dimensional accuracy as compared with conventional electrochemical machining. One primary issue in pulse electrochemical micromachining is to identify and control machining depth as well as interelectrode gap size. This paper presents an identification method for the machining depth by in-process analysis of machining current and interelectrode gap size. The inter electrode gap characteristics, including pulse current, effective volumetric electrochemical equivalent and electrolyte conductivity variations, are analysed based on the model and experiments.

  • PDF

Pullout Test of Headed Reinforcement 2: Deep Embedment

  • Choi, Dong Uk;Shin, InYong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1091-1096
    • /
    • 2003
  • Pullout tests of single headed bars using plain concrete blocks indicate that the embedment depth of $10d_b$ is in general required for the headed bars to develop pullout strength equivalent to 125% of bar yield strength. In this experimental study, test results of multiple headed bars installed in reinforced concrete column sections are presented. Test variables included embedment depth, column main reinforcement ratio, and spacing of column ties. 2D29 bars were pulled out at one time from normal strength concrete. Test results indicated that the embedment depths, column tie spacings, and column main reinforcement ratios all influenced the pullout strengths of the headed bars. When the embedment depth was not sufficient, narrow tie spacings especially resulted in increased pullout strengths of the headed bars. Test results also indicated that the embedment depth of 15㏈ was sufficient for the closely spaced two headed bars (head-to-head spacing =$6d_b$) to develop pullout strength equivalent to 125% of the bar yield strength.

  • PDF

Stress Distribution Behavior Hollow and Felled Circular Column Column-Box Beam Connections (비충전 및 충전 원형기둥-상자형보 접합부의 응력분포특성)

  • Hwang, Won Sup;Park, Yong Myung;Choi, Won Kyong;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.433-441
    • /
    • 2002
  • This study present the stressdistribution of circular column-box beam connection in steel piers. Experiments were carried out for hollow and concrete filled connections, depending on the joint angle. To determine vertical and shear stress distribution, this study examined the equivalent web depth dc' that is mainly used in existing design equation. Lidewise, as additional equivalent web depth was introduced. Stress values that were calculated using equivalent wev depth were also compared with the test stress value. Results showed that stresses of hollow and filled connections have great differences. However, dc' has a limitation for some joint angles. Likewise, stress of filled connection was less than that of the hollow connection. The test value of filled connection was also compared with design equations that were introduced from the hollow connection.

Effects of Span-to-depth Ratio and Poisson's Ratio on Elastic Constants from Bending and Plate Tests

  • Jeong, Gi Young;Kong, Jin Hyuk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The goal of this study is to evaluate the limitation of ASTM D 198 bending and ASTM D 3044 in determination of elastic modulus and shear modulus. Different material properties and span to depth ratios were used to analyze the effects of material property and testing conditions. The ratio of true elastic modulus to apparent elastic modulus evaluated from ASTM D 198 bending sharply decreased with increment of span to depth ratio. Shear modulus evaluated from ASTM D 198 bending decreased with increment of depth, whereas shear modulus evaluated from ASTM D 3044 was hardly influenced by increment of depth. Poisson's ratio influenced shear modulus from ASTM D 198 bending but did not influence shear modulus from ASTM D 3044. Different shearing factor was obtained for different depths of beams to correct shear modulus obtained from ASTM D 198 bending equivalent to shear modulus from theory of elasticity. Equivalent shear modulus of materials could be obtained by applying different shearing factors associated with beam depth for ASTM D 198 bending and correction factor for ASTM D 3044.

Development of Weight Type Snowfall Gauge and Observation (중량식 강설량계 개발과 관측)

  • Lee, Bu-Yong
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • We need water equivalent unit data of snowfall for the purpose of forecast and hydrology related research area. This study developed new method of automatic recording snowfall as weight unit. The instrument designed for measuring weight of snowfall by stain-gauge loadcell. Field test of instrument carried out at Daegwallyeong Obs. Station from 22 Jan. to 22 Feb. 2007. During observation period there is 15.3 cm snow depth and 16.0 mm of accumulated water equivalent depth at Daegwallyeong Obs. Station on 13 to 14 Feb. 2007. But the instrument of this study recorded 22.1 mm of water equivalent depth. It is not easy to explain difference between Daegwallyeong and this study. Because this study is only one case of comparison of snow measurement and there is very little amount of snow observation research. The density of snowfall calculated from 0.09 to $0.15g/cm^3$ from the observation data of 13 to 14 Feb. 2007. There is high relation between radar echo and snowfall amount measured by weight unit. It can supports forecast of snowfall and development of numerical model for forecast.

Measurement and Analysis of Earth Resistivity for the Substation Grounding Design (변전소 접지설계를 위한 대지고유저항의 측정과 해석)

  • Han, P.;Kim, J.Y.;Choi, J.K.;Jung, G.J.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.807-812
    • /
    • 1997
  • For an equivalent uniform soil model to multiple-layered soil structure, ground depth, which is used in the calculation of equivalent resistivity, should be varied according to the size of grounding area. In case of 150 kV substation grounding design, 15 m of ground depth has been used and 25 m for 345 kV, But applying these ground depths can lead to errors in grounding resistance calculation, and these errors are coming from the poor representation of those depths to real soil resistivities. In this paper, the soil resistivity measurement techniques by Wenner method and grounding resistance calculation results by computer simulation were presented. Case studies contain the area from 3,000 to $30,000\;m^2$ and measuring space from of m to $100{\sim}250\;m$, Based of the computation results, 50 m, 60 m and 80 m of ground depth for less than 30, 40 and 70 m of equivalent hemispherical radius were proposed respectively.

  • PDF