• 제목/요약/키워드: equivalent compressive strength

검색결과 169건 처리시간 0.028초

고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석 (Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석 (Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment)

  • 한민철;신병철
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

Modeling of Compressive Strength Development of High-Early-Strength-Concrete at Different Curing Temperatures

  • Lee, Chadon;Lee, Songhee;Nguyen, Ngocchien
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.205-219
    • /
    • 2016
  • High-early-strength-concrete (HESC) made of Type III cement reaches approximately 50-70 % of its design compressive strength in a day in ambient conditions. Experimental investigations were made in this study to observe the effects of temperature, curing time and concrete strength on the accelerated development of compressive strength in HESC. A total of 210 HESC cylinders of $100{\times}200mm$ were tested for different compressive strengths (30, 40 and 50 MPa) and different curing regimes (with maximum temperatures of 20, 30, 40, 50 and $60^{\circ}C$) at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) From a series of regression analyses, a generalized rate-constant model was presented for the prediction of the compressive strength of HESC at an early age for its future application in precast prestressed units with savings in steam supply. The average and standard deviation of the ratios of the predictions to the test results were 0.97 and 0.22, respectively.

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

석회석 혼합시멘트의 분말도 및 SO3 함량이 시멘트 모르타르에 미치는 영향 (Effect of Fineness and SO3 Content of Limestone Mixed Cement on Mortar)

  • 인병은;김진성;남성영;김춘식;조성현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2023
  • Using the limestone powder as material that can alternate the clinker, it seems to get positive effect as filler and enhance workability of cement, but the amount of replacement can affect compressive strength of cement. This study was evaluated the effect of limestone mixed cement fineness and SO3 content on cement mortar. As a result of measuring the compressive strength, it showed 93% compared to the compressive strength of Plain 28 days at fineness 4,400 and SO3 2.6%. It is judged that additional research is necessary to express the strength equivalent to that of Plain.

  • PDF

등가재령을 이용한 콘크리트의 강도 예측에 의한 건설생산현장에서의 강도관리에 관한 실험저 연구 (An Experimental Study in Strength Control by Prediction Strength of Concrete using Equivalent Age in Construction Field)

  • 주지현;최성우;박선규;김배수;남재현;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.287-290
    • /
    • 2000
  • Nowadays, strength control is performed by test of compressive strength of concrete which is taken in construction filed. But because it is possible to confirm only compressive strength of concrete by that way, it is difficult to performing strength control pr process plan, So, if we can predict compressive strength of concrete, we can decide when shores and forms can be removed safety, plan process efficiently. This study intends to propose basic data for strength control as determination the time of forwoak removal through investigating propriety of strength prediction using Freiesleben function.

  • PDF

수정 반응률 상수 모델에 의한 콘크리트 압축강도의 예측 (Prediction of Concrete Compressive Strength by a Modified Rate Constant Model)

  • 한상훈;김진근;문영호
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.31-42
    • /
    • 2000
  • This paper discusses the validity of models predicting the compressive strength of concrete subjected to various temperature histories and the shortcomings of existing rate constant model and apparent activation energy concept. Based on the discussion, a modified rate constant model is proposed. The modified rate constant model, in which apparent activation energy is a nonlinear function of curing temperature and age, accurately estimates the development of the experimental compressive strengths by a few researchers. Also, the apparent activation energy of concrete cured with high temperature decreases rapidly with age, but that of concrete cured with low temperature decreases gradually with age. Finally generalized models to predict apparent activation energy and compressive strength are proposed, which are based on the regression results.

Optimization of Curing Regimes for Precast Prestressed Members with Early-Strength Concrete

  • Lee, Songhee;Nguyen, Ngocchien;Le, Thi Suong;Lee, Chadon
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2016
  • Early-strength-concrete (ESC) made of Type I cement with a high Blaine value of $500m^2/kg$ reaches approximately 60 % of its compressive strength in 1 day at ambient temperature. Based on the 210 compressive test results, a generalized rateconstant material model was presented to predict the development of compressive strengths of ESC at different equivalent ages (9, 12, 18, 24, 36, 100 and 168 h) and maximum temperatures (20, 30, 40, 50 and $60^{\circ}C$) for design compressive strengths of 30, 40 and 50 MPa. The developed material model was used to find optimum curing regimes for precast prestressed members with ESC. The results indicated that depending on design compressive strength, conservatively 25-40 % savings could be realized for a total curing duration of 18 h with the maximum temperature of $60^{\circ}C$, compared with those observed in a typical curing regime for concrete with Type I cement.

고강도 콘크리트의 등가응력 매개변수 추정에 관한 연구 (Prediction of Equivalent Stress Block Parameters for High Strength Concrete)

  • 이도형;전정문;정민철;공정식
    • 대한토목학회논문집
    • /
    • 제31권3A호
    • /
    • pp.227-234
    • /
    • 2011
  • 최근 들어 고강도 콘크리트의 사용이 꾸준히 증가하고 있지만 현행 국내 콘크리트구조설계기준은 보통강도 콘크리트에 기초한 등가직사각형 응력매개변수를 사용하고 있어 응력분포가 일반 강도 콘크리트와 상이한 고강도 콘크리트의 설계 시 문제점을 야기할 수 있다. 따라서 이러한 문제점을 극복하기 위해서는 고강도 콘크리트에 대한 새로운 등가응력 매개변수 값이 제시되어져야 할 것으로 판단된다. 본 연구에서는 새로운 등가응력 매개변수를 제안하기 위해 기존 연구자들의 실험데이터를 토대로 선형 및 다중회귀분석을 수행하여 40~80 MPa 까지의 고강도 콘크리트에 대한 등가응력 매개변수를 이론적으로 추정하고 제안된 등가응력모델을 휨과 압축 부재설계에 적용시켜 기존의 국내 콘크리트구조설계기준과 비교검토 하였다. 제안된 등가응력모델로 구조설계를 수행한 결과, 콘크리트 강도 40~70 MPa 까지는 기존 모델에 비해 콘크리트 단면 감소 효과가 있었으며 또한 압축부재의 경우, 제안된 모델이 기존 모델 보다 콘크리트의 압축력을 더 보수적으로 평가하는 것으로 나타났다.

동절기 단열 유·무 거푸집을 설치한 슬래브 콘크리트에서 등가재령 기반의 무선센서 네트워크를 이용한 강도 모니터링 (A strength monitoring with wireless sensor network based on equivalent age method depending on the usage of the insulated formwork during the winter period)

  • 이영준;이혁주;현승용;서항구;이상운;한민철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.167-168
    • /
    • 2018
  • In this research, the feasibility of wireless senor for compressive strength evaluation was checked by applying on the actual apartment construction site with insulation formwork during winder period. As a result, there was no significant problem on monitoring the compressive strength of the concrete with the sensor. Thus it is considered that the suggested method can be an efficient method for the quality control at the construction site.

  • PDF