• Title/Summary/Keyword: equivalent

Search Result 12,578, Processing Time 0.042 seconds

A Stochastic Prediction of Rolling of Ships Using Equivalent Non-linear Method (등가 비선형화 법에 의한 선박 횡요의 확률론적 예측)

  • Sun-Hong Kwon;Jung-Han Chung;Dae-Woong Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.60-65
    • /
    • 1992
  • The roll response of a ship to random beam seas is investigated in terms of the threshold crossing process. The non-white excitation process is modeled as an equivalent white-noise one based on the assumption that the upcrossing properties of the response can be approximately replaced by the excitation with a white noise process with a suitable intensity. Then the non-linear damping is reinstated. The reinstated equation of motion with the equivalent white-noise intensity is solved using the equivalent non-linear method to get the desired probability density function. The proposed scheme is tested extensively with varing coefficients.

  • PDF

Nonlinear Response Structural Optimization of a Joined-Wing Using Equivalent Loads (등가하중법을 이용한 접합날개의 기하 비선형 응답 구조최적설계)

  • Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.321-326
    • /
    • 2007
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing arc joined together in the joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performances and reduction of the structural weight. The structural behavior of the joined-wing has a high geometric nonlinearity according to the external loads. The gust loads are the most critical loading conditions in the structural design of the joined-wing. The nonlinear behavior should be considered in the optimization of the joined-wing. It is well known that conventional nonlinear response optimization is extremely expensive: therefore, the conventional method is almost impossible to use in large scale structures such as the joined-wing. In this research, geometric nonlinear response structural optimization is carried out using equivalent loads. Equivalent loads are the load sets which generate the same response field in linear analysis as that from nonlinear analysis. In the equivalent loads method, the external loads are transformed to the equivalent loads (EL) for linear static analysis, and linear response optimization is carried out based on the EL.

  • PDF

Fundamental Natural Frequency Analysis of Stepped Cantilever Beams by Equivalent Beam Transformation Technique (계단형 외팔보의 등가보 변환에 의한 기본고유진동수 해석)

  • Moon, Sang-Pil;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.401-410
    • /
    • 2008
  • The natural frequency of a beam plays an important role in not only vibration analysis but also understanding its dynamic characteristics. It is complicated to analyse the natural frequency of a stepped beam with discontinuously varying section. Approximate analysis methods such as Rayleigh-Ritz method, FEM, etc. are frequently used for the vibration analysis of stepped beams. In such a case, accuracy of these methods depends upon the number of partitioned elements, the number of the iterations in calculation and the assumed mode shape. This study presents an approximate analysis method for the fundamental natural frequency analysis of stepped cantilever beam, using equivalent beam transformation technique. Validity and usefulness are verified by comparing the proposed method with FEM for several example problems.

A Study on Deduction of Equivalent Circuit Parameters and Verification of Control Algorithm of Thrust Force of a Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소형 모델의 등가회로 파라미터 도출 및 추진력 제어 알고리즘 검증 연구)

  • Park, Chan-Bae;Mok, Hyung-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1248-1254
    • /
    • 2010
  • Authors conducted a deduction of some parameters using the magnetic equivalent circuit method and a verification study of the thrust force control algorithm of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap of the secondary aluminium plate of a rotary-typed small-scaled LIM. And authors conducted a verification study of the indirect vector control algorithm with constant slip frequency by using the rotary-typed small-scaled LIM tester set on the basis of the calculated LIM parameters. Finally authors accomplished a research on applicability for LIM railway transit.

Eigenvalue Analysis of Symmetrically Stepped Beams by Equivalent Beam Transformation (대칭단헝 단순보의 등가보 변환에 의한 고유치 해석)

  • Jung Jae-Chul;Moon Sang-Pil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.55-62
    • /
    • 2006
  • The natural frequency of a beam plays a critical role in the dynamic analysis of beams. Especially it is a complicated and difficult task to analyse the natural frequency of a stepped beam with an irregularly varying section. The lumped mass methods, multi-degree of freedom analyses, are mainly used for the analysis of this kind of stepped beams. The accuracy of these methods are determined by the number of the partitions of elements, the number of the iterations in calculation, and the accuracy of assumed mode shapes. This study presents a method of transformation from symmetrically stepped beams to an equivalent beam and a method of the eigenvalue analysis. Appropriateness and utility of this method are demonstrated by comparing examples from other literatures and various models.

Unified equivalent frame method for flat plate slab structures under combined gravity and lateral loads - Part 2: verification

  • Choi, Seung-Ho;Lee, Deuck Hang;Oh, Jae-Yuel;Kim, Kang Su;Lee, Jae-Yeon;Shin, Myoungsu
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • In the previous paper, authors proposed the unified equivalent frame method (UEFM) for the lateral behavior analysis of the flat plate structure subjected to the combined gravity and lateral loads, in which the rotations of torsional members were distributed to the equivalent column and the equivalent slab according to the relative ratio of gravity and lateral loads. In this paper, the lateral behavior of the multi-span flat plate structures under various levels of combined gravity and lateral loads were analyzed by the proposed UEFM, which were compared with test results as well as those estimated by existing models. In addition, to consider the stiffness degradation of the flat plate system after cracking, the stiffness reduction factors for torsional members were derived from the test results of the interior and exterior slab-column connection specimens, based on which the simplified nonlinear push-over analysis method for flat plate structures was proposed. The simplified nonlinear analysis method provided good agreements with test results and is considered to be very useful for the practical design of the flat plate structures under the combined gravity and lateral loads.

Analysis on the alternating torque characteristics of capacitor motor with windings not in quadrature (비대칭축콘덴서 전동기의 진동토오크 특성의 해석)

  • 오경열
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.41-53
    • /
    • 1977
  • With the equivalent series circuit analyzed aby revolving field theory and drawn by using the equivalent circuit constant ratios in capacitor motor with windings not in quadrature having space harmonics in its magnetic field (the above ratios are the equivalent circuit constants for the fundamental flux to the magnetizing reactance of the circuit), the equation for the alternating torque with twice line freequency in the motor is directly derived, and the alternating torque is measured with the self-made stator vibration angle amplitude measuring apparatus that is composed of a pickup, filter, photoelectric pickoff etc. The measured values satisfactorily compared with computed values. The properties of the alternating torque characteristics for respective harmonic fluxes and the r5esultant alternating torque characteristic, the effects of the alternating torque characteristics for respective harmonic fluxes on the resultant alternating torque characteristic, the effects of the variation in the motor constants and the equivalent circuit constant ratios for the fundamental flux on the alternating torque characteristics for respective harmonic fluxes and the resultant alternating torque characteristic, are made clear, applying the equation. There exist the optimum values of the motor constants and the equivalent circuit constant ratios for the fundamental flux for decreasing the alternating torque, and the value could be determined in design by the method presented in this paper.

  • PDF

Equivalent Network Modeling of Slot-Coupled Microstripline to Waveguide Transition (슬롯 결합 마이크로스트립라인-도파관 천이기의 등가 회로 모델링)

  • Kim Won-Ho;Shin Jong-Woo;Kim Jeong-Phill
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.1005-1010
    • /
    • 2004
  • An analysis method of slot-coupled microstripline to waveguide transition is presented to developed a simple but accurate equivalent circuit model. The equivalent circuit consists of an ideal transformer, microstrip open stub, and admittance elements looking into a waveguide and a half space of feed side from a slot center. The related circuit element values are calculated by applying the reciprocity theorem, the Fourier transform and series representation, the complex power concept, and the spectral-domain immittance approach. The computed scattering parameters are compared with the measured, and good agreement validates the simplicity and accuracy of the proposed equivalent circuit model.

Free vibration analysis of a uniform beam carrying multiple spring-mass systems with masses of the springs considered

  • Wu, Jia-Jang
    • Structural Engineering and Mechanics
    • /
    • v.28 no.6
    • /
    • pp.659-676
    • /
    • 2008
  • The reports regarding the free vibration analysis of uniform beams carrying single or multiple spring-mass systems are plenty, however, among which, those with inertia effect of the helical spring(s) considered are limited. In this paper, by taking the mass of the helical spring into consideration, the stiffness and mass matrices of a spring-mass system and an equivalent mass that may be used to replace the effect of a spring-mass system are derived. By means of the last element stiffness and mass matrices, the natural frequencies and mode shapes for a uniform cantilever beam carrying any number of springmass systems (or loaded beam) are determined using the conventional finite element method (FEM). Similarly, by means of the last equivalent mass, the natural frequencies and mode shapes of the same loaded beam are also determined using the presented equivalent mass method (EMM), where the cantilever beam elastically mounted by a number of lumped masses is replaced by the same beam rigidly attached by the same number of equivalent masses. Good agreement between the numerical results of FEM and those of EMM and/or those of the existing literature confirms the reliability of the presented approaches.

Small-Size Induction Machine Equivalent Circuit Including Variable Stray Load and Iron Losses

  • Basic, Mateo;Vukadinovic, Dinko
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1604-1613
    • /
    • 2018
  • The paper presents the equivalent circuit of an induction machine (IM) model which includes fundamental stray load and iron losses. The corresponding equivalent resistances are introduced and modeled as variable with respect to the stator frequency and flux. Their computation does not require any tests apart from those imposed by international standards, nor does it involve IM constructional details. In addition, by the convenient positioning of these resistances within the proposed equivalent circuit, the order of the conventional IM model is preserved, thus restraining the inevitable increase of the computational complexity. In this way, a compromise is achieved between the complexity of the analyzed phenomena on the one hand and the model's practicability on the other. The proposed model has been experimentally verified using four IMs of different efficiency class and rotor cage material, all rated 1.5 kW. Besides enabling a quantitative insight into the impact of the stray load and iron losses on the operation of mains-supplied and vector-controlled IMs, the proposed model offers an opportunity to develop advanced vector control algorithms since vector control is based on the fundamental harmonic component of IM variables.