• 제목/요약/키워드: equilibrium concentration

검색결과 810건 처리시간 0.02초

가옥 및 실험실내 라돈평형인자, 비 흡착 라돈자손 비율의 일일 변동 특성 (Diurnal Variations of Equilibrium Factor and Unattached fraction of Radon Progeny in Some Houses and Laboratories)

  • 이승찬;김창규;이동명;강희동
    • Journal of Radiation Protection and Research
    • /
    • 제26권4호
    • /
    • pp.399-408
    • /
    • 2001
  • 일반가옥 및 실험실에서 라돈농도, 평형등가농도 및 평형인자의 농도 변화를 검토하였으며, 환기조건에 따른 평형인자, 비흡착 라돈자손 비율의 변통 특성을 검토하였다. 가옥 7개 지점에서의 평균 라돈농도, 평형등가농도 및 평형인자는 각각 $30\;Bq\;m^{-3},\;19.6\;Bq\;m^{-3}$, 0.65였다. 한편, 실험실 3개 지점에서의 평균 라돈농도, 평형등가농도 및 평형인자는 각각 $55.0\;Bq\;m^{-3},\;31.9\;Bq\;m^{-3}$, 0.58였다 실내에서의 라돈농도, 평형등가농도 및 평형인자는 새벽 및 아침시간에 높고 오후 4시부터 밤 10시 사이에 낮아지는 주기적인 특성을 나타내었다 환기상태가 좋은 경우가 환기상태가 나쁜 경우에 비해 평형인자는 낮아지는 반면, 비 흡착 라돈자손 비율이 증가하는 경향을 나타내었으며, 평형인자는 기압, 습도에 비례하는 반면, 온도에는 반비례하는 관계를 나타내었다.

  • PDF

초저이온농도에서 이온교환수지에 의한 실리카제거 평형특성 (Equilibrium Property of Ion Exchange Resin for Silica Removal at Ultralow Concentration)

  • 윤태경;이강춘;노병일
    • 한국환경과학회지
    • /
    • 제16권8호
    • /
    • pp.907-912
    • /
    • 2007
  • Ion exchange resin was used to remove silica ion at ultralow concentration. The effects of temperature, type of ion exchange resin and single/mixed-resin systems on removal efficiency were estimated. As temperature increased, the slope of concentration profile became stiff, and the equilibrium concentration was higher. In the single resin system, the removal of silica was continued up to 400 min, but the silica concentration was recovered to initial concentration after 400 min due to the effect of dissolved $CO_2$. In the mixed-resin system it took about 600 min to reach equilibrium. Because of faster cation exchange reaction than anion exchange reaction, the effect of $CO_2$ could be removed. Based on the experimental results carried out in the mixed-resin system, the selectivity coefficients of silica ion for each ion exchange resin were calculated at some specific temperatures. The temperature dependency of the selectivity coefficient was expressed by the equation of Kraus-Raridon type.

R-410A/POE 오일 혼합물의 기-액상평형과 상용성에 관한 연구 (Investigation of Vapor-Liquid Equilibrium and Miscibility for R-410A/POE Oil Mixtures)

  • 김창년;송준석;이은호;박영무;유재석;김기현
    • 설비공학논문집
    • /
    • 제12권6호
    • /
    • pp.589-598
    • /
    • 2000
  • The vapor-liquid equilibrium and miscibility measurement apparatus was developed and used to obtain data for refrigerant/oil mixture. The vapor-liquid equilibrium and miscibility data for R-410a/POE32 and R-410A/POE46 oil mixtures are obtained over the temperature range from -20 to $60^{\circ}C\;with\;10^{\circ}C$ intervals and the oil concentration range from 0 to 90 wt%. Using the experimental data, an empirical model is developed to predict the temperature-pressure-concentration relations for R-410A/POE oil mixtures at equilibrium. In the R-410A/POE32 oil mixture, the average root-mean-square deviation between measured data and calculated results from the empirical model is 2.00% and in the R-410a/POE46 oil mixture, that is 3.69%. Flory-Huggins theory is also used to predict refrigerant/oil mixture behavior. Miscibility for R-410A/POE32 oil mixture was observed all over the experimental conditions. Immiscibility for R-410A/POE46 oil mixture was observed at the low oil concentrations(10~30 wt%).

  • PDF

함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성 (Characterizations of Pt-SPE Electrocatalysts Prepared by an Impregnation-Reduction Method for Water Electrolysis)

  • 장두영;장인영;권오환;김경언;황갑진;강안수
    • 한국수소및신에너지학회논문집
    • /
    • 제17권4호
    • /
    • pp.440-447
    • /
    • 2006
  • Solid polymer electrolyte(SPE) membrane with electrodes embedded on both faces offer unique possibilities for the electrochemical cells like water electrolyzer with fuel cell. The Nafion 117 membrane was used as the SPE, and $Pt(NH_3)_4Cl_2$ and $NaBH_4$ as the electrocatalysts and reducing agent, respectively. The 'impregnation-reduction(I-R) method' has been investigated as a tool for the preparation of electrocatalysts for water electrolyzer by varying the concentration of reducing agent and reduction time at fixed concentration of platinum salt, 5 mmol/L. Pt-SPE electrocatalysts prepared by non-equilibrium I-R method showed the lowest cell voltage of 2.17 V at reduction time, 90 min and with concentration of reducing agent 0.8 mol/L and the cell voltage with those by equilibrium I-R method was 2.42 V at reduction time, 60 min and with concentration of reducing agent 0.8 mol/L. The cell voltage were obtained at a current density $1\;A/cm^2$ and $80^{\circ}C$. In water electrolysis, hydrogen production efficiency by Pt-SPE electrocatalyst is 68.2% in case of non-equilibrium I-R method and 61.2% at equilibrium I-R method.

Equilibrium Concentration of Radionuclides in Cement/Groundwater/Carbon Steel System

  • Keum, D.K.;Cho, W.J.;Hahn, P.S.
    • Nuclear Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.127-137
    • /
    • 1997
  • Equilibrium concentrations of major elements in an underground repository with a capacity of 100,000 drums have been simulated using the geochemical computer code (EQMOD). The simulation has been carried out at the conditions of pH 12 to 13.5, and Eh 520 and -520 mV. Solubilities of magnesium and calcium decrease with the increase of pH. The solubility of iron increases with pH at Eh -520 mV of reducing environment while it almost entirely exists as the precipitate of Fe(OH)$_3$(s) at Eh 520 mV of oxidizing environment. All of cobalt and nickel are predicted to be dissolved in the liquid phase regardless of pH since the solubility limit is greater than the total concentration. In the case of cesium and strontium, all forms of both ions are present in the liquid phase because they have negligible sorption capacity on cement and large solubility under disposal atmosphere. And thus the total concentration determines the equilibrium concentration. Adsorbed amount of iodide and carbonate are dependent on adsorption capacity and adsorption equilibrium constant. Especially, the calcite turns out to be a solubility-limiting phase on the carbonate system. In order to validate the model, the equilibrium concentrations measured for a number of systems which consist of iron, cement, synthetic groundwater and radionuclides are compared with those predicted by the model. The concentrations between the model and the experiment of nonadsorptive elements cesium, strontium, cobalt nickel and iron, are well agreed. It indicates that the assumptions and the thermodynamic data in this work are valid. Using the adsorption equilibrium constant as a free parameter, the experimental data of iodide and carbonate have been fitted to the model. The model is in a good agreement with the experimental data of the iodide system.

  • PDF

화학평형과 평형이동에 대한 대학생과 교사들의 개념조사 (Identifuication of College Student's And Teacher's Conceptions for Chemical Equilibrium and Equilibrium Shift)

  • 박종윤;박현주
    • 대한화학회지
    • /
    • 제46권3호
    • /
    • pp.265-278
    • /
    • 2002
  • 본 연구에서는 화학평형과 평형이동에 관한 대학생들과 교사들의 개념형성 정도를 조사하기 위하여 개념검사 문항을 이용하여 서울지역 대학교 1학년 학생53명, 3학년 학생 28명, 4학년 학생 26명과 고등학교 교사10명에게 지필검사를 실시하였다. 개념검사 문항의 ?뼁育?기체의 부분압력과 농도 계산, 기체상 반응의 평형상수 계산과 비활성 기체 첨가에 의한 평형이동, 약산 수용액에서의 농도 계산과 물 또는 공통이온 첨가에 의한 평형이동에 관한 것으로 르샤틀리에 원리의 적용이 어려운 상황에서 반응지수의 변화를 이용하여 평형이동 방향을 예측할 수 있는가에 초점을 두었다. 응답 내용을 분석한 결과, 교사와 물리화학을 배운 3학년 학생들의 정답률이 일반화학을 배운 1학년 학생들이나 물리화학을 배운지 1년 정도 지난 4학년 학생들보다 유의미하게 높은 것으로 나타났다. 그리고 선수 개념인 부분압력과 농도 계산에 대한 정답률은 높았으나 이와 동일한 조건에서 화학평형이동 방향을 예측하는 문항의 정답률은 낮게 나타나 계산 능력보다는 반응지수를 이용한 평형이동의 예측에 대한 개념 형성이 부족한 것으로 드러났다.

염소를 함유한 폐기물의 소각시 생성되는 유해 중금속류 결정에 대한 화학 평형 계산 (An Equilibrium Analysis to Determine the Speciation of Metals in the Incineration of Waste Containing Chlorine)

  • 이정진;황정호
    • 대한기계학회논문집
    • /
    • 제19권12호
    • /
    • pp.3372-3381
    • /
    • 1995
  • An equilibrium analysis was carried out to determine principal species of heavy metals in waste incineration and their behaviors with variation of temperature, chlorine concentration, excess air ratio, and C/H ratio. The waste was assumed as a compound of hydrocarbon fuel, chlorine, and metals. Calculated results showed that the most important parameter to determine the principal species was temperature. Chlorine concentration also affected on mole fractions of the principal species. Generally principal species at high temperature were chlorides while there were some metals of which principal species were oxides. At low temperature mole fractions of the principal species increased, but at high temperature mole fractions of some metal species decreased. C/H ratio of the hydrocarbon fuel and excess air ratio had little effect on mole fractions of the metal species, compared to the temperature and chlorine concentration.

Benzamidoxime에 의한 중금속의 추출특성 (Characteristics of Heavy Metal Extraction by Benzamidoxime)

  • 이상훈;윤영삼
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.371-377
    • /
    • 1999
  • The effects of benzamidoxime concentration, solvents and temperature on the degree of metal extraction were investigated to apply benzamidoxime to heavy metal extraction as chelating agent. Benzamidoxime was synthesized from benzonitrile with hydroxylamine. The chemical structure of benzamidoxime was identified. The degree of heavy metal extraction was increased with increasing the concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an concentration of benzamidoxime and decreasing the extraction temperature. Benzamidoxime was found to be an effective extractant for Cu-extraction by benzene or chloroform. The relationship between the thermodynamic overall equilibrium constant and absolute temperature was expressed as log K = -5.56 + $855T^{-1}$. Heat of extraction, $$\Delta$H^0$ were calculated from overall equilibrium constants at various temperature and the extraction reactionby benzamidoxime was found to be exthothermic.

  • PDF

SiC의 화학증착에 대한 열역학적 평형농도계산 (A Thermodynamic Calculation of Equilibrium Concentration for the CVD of SiC)

  • 서명기
    • 산업기술연구
    • /
    • 제5권
    • /
    • pp.73-79
    • /
    • 1985
  • Thermodynamic calculation for the CVD of SiC from methyltrichlorosilane(MTS) was done in some range of deposition condition to identify optimum condition. The results show that the most considerable chemical species are chloride and chlorosilane for silicon source and methane and acetylene for carbon source. In order to yield single phase ${\beta}$-SiC it is believed that optimum temperature range is between 1500 and $1700^{\circ}k$. With increasing temperature, stable phase is changed from Si+SiC phase to C+SiC phase. It is believed because equilibrium concentration of silicon source decrease and equilibrium concentration of carbon source increases with increasing temperature.

  • PDF