• Title/Summary/Keyword: equatorial F region

Search Result 17, Processing Time 0.025 seconds

The Morphology of Equatorial Plasma Bubbles - a review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2015
  • Plasma bubbles that occur in the equatorial F-region make up one of the most distinguishing phenomena in the ionosphere. Bubbles represent plasma depletions with respect to the background ionosphere, and are the major source of electron density irregularities in the equatorial F-region. Such bubbles are seen as plasma depletion holes (in situ satellite observations), vertical plumes (radar observations), and emission-depletion bands elongated in the north-south direction (optical observations). However, no technique can observe the whole three-dimensional structure of a bubble. Various aspects of bubbles identified using different techniques indicate that a bubble has a "shell" structure. This paper reviews the development of the concepts of "bubble" and "shell" in this context.

The Occurrence Climatology of Equatorial Plasma Bubbles: A Review

  • Kil, Hyosub
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.23-33
    • /
    • 2022
  • Electron density irregularities in the equatorial ionosphere at night are understood in terms of plasma bubbles, which are produced by the transport of low-density plasma from the bottomside of the F region to the topside. Equatorial plasma bubbles (EPBs) have been detected by various techniques on the ground and from space. One of the distinguishing characteristics of EPBs identified from long-term observations is the systematic seasonal and longitudinal variation of the EPB activity. Several hypotheses have been developed to explain the systematic EPB behavior, and now we have good knowledge about the key factors that determine the behavior. However, gaps in our understanding of the EPB climatology still remain primarily because we do not yet have the capability to observe seed perturbations and their growth simultaneously and globally. This paper reviews the occurrence climatology of EPBs identified from observations and the current understanding of its driving mechanisms.

Empirical Modeling of the Global Distribution of Magnetosonic Waves with Ambient Plasma Environment using Van Allen Probes

  • Kim, Kyung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.11-22
    • /
    • 2022
  • It is suggested that magnetosonic waves (also known as equatorial noise) can scatter radiation belt electrons in the Earth's magnetosphere. Therefore, it is important to understand the global distribution of these waves between the proton cyclotron frequency and the lower hybrid resonance frequency. In this study, we developed an empirical model for estimating the global distribution of magnetosonic wave amplitudes and wave normal angles. The model is based on the entire mission period (approximately 2012-2019) of observations of Van Allen Probes A and B as a function of the distance from the Earth (denoted by L*), magnetic local time (MLT), magnetic latitude (λ), and geomagnetic activity (denoted by the Kp index). In previous studies the wave distribution inside and outside the plasmasphere were separately investigated and modeled. Our model, on the other hand, identifies the wave distribution along with the ambient plasma environment-defined by the ratio of the plasma frequency (fpe) to the electron cyclotron frequency (fce)-without separately determining the wave distribution according to the plasmapause location. The model results show that, as Kp increases, the dayside wave amplitude in the equatorial region intensifies. It thereby propagates the intense region towards the wider MLT and inward to L* < 4. In contrast, the fpe/fce ratio decreases with increasing Kp for all regions. Nevertheless, the decreasing aspect differs between regions above and below L* = 4. This finding implies that the particle energy and pitch angle that magnetosonic waves can effectively scatter vary depending on the locations and geomagnetic activity. Our model agrees with the statistically observed wave distribution and ambient plasma environment with a coefficient of determination of > 0.9. The model is valid in all MLTs, 2 ≤ L* < 6, |λ| < 20°, and Kp ≤ 6.

Climatology of Equatorial Plasma Bubbles in Ionospheric Connection Explorer/Far-UltraViolet (ICON/FUV) Limb Images

  • Park, Jaeheung;Mende, Stephen B.;Eastes, Richard W.;Frey, Harald U.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.87-98
    • /
    • 2022
  • The Far-UltraViolet (FUV) imager onboard the Ionospheric Connection Explorer (ICON) spacecraft provides two-dimensional limb images of oxygen airglow in the nightside low-latitude ionosphere that are used to determine the oxygen ion density. As yet, no FUV limb imager has been used for climatological analyses of Equatorial Plasma Bubbles (EPBs). To examine the potential of ICON/FUV for this purpose, we statistically investigate small-scale (~180 km) fluctuations of oxygen ion density in its limb images. The seasonal-longitudinal variations of the fluctuation level reasonably conform to the EPB statistics in existing literature. To further validate the ICON/FUV data quality, we also inspect climatology of the ambient (unfiltered) nightside oxygen ion density. The ambient density exhibits (1) the well-known zonal wavenumber-4 signatures in the Equatorial Ionization Anomaly (EIA) and (2) off-equatorial enhancement above the Caribbean, both of which agree with previous studies. Merits of ICON/FUV observations over other conventional data sets are discussed in this paper. Furthermore, we suggest possible directions of future work, e.g., synergy between ICON/FUV and the Global-scale Observations of the Limb and Disk (GOLD) mission.

Solar Flux Effects on the Variations of Equatorial Electrojet (EEJ) and Counter-Electrojet (CEJ) Current across the Different Longitudinal Sectors during Low and High Solar Activity

  • Alemayehu Mengesha Cherkos
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.45-57
    • /
    • 2023
  • This study examined the effect of solar flux (F10.7) and sunspots number (R) on the daily variation of equatorial electrojet (EEJ) and morning/afternoon counter electrojet (MCEJ/ACEJ) in the ionospheric E region across the eight longitudinal sectors during quiet days from January 2008 to December 2013. In particular, we focus on both minimum and maximum solar cycle of 24. For this purpose, we have collected a 6-year ground-based magnetic data from multiple stations to investigate EEJ/CEJ climatology in the Peruvian, Brazilian, West & East African, Indian, Southeast Asian, Philippine, and Pacific sectors with the corresponding F10.7 and R data from satellites simultaneously. Our results reveal that the variations of monthly mean EEJ intensities were consistent with the variations of solar flux and sunspot number patterns of a cycle, further indicating that there is a significant seasonal and longitudinal dependence. During the high solar cycle period, F10.7 and R have shown a strong peak around equinoctial months, consequently, the strong daytime EEJs occurred in the Peruvian and Southeast Asian sectors followed by the Philippine regions throughout the years investigated. In those sectors, the correlation between the day Maxima EEJ and F10.7 strengths have a positive value during periods of high solar activity, and they have relatively higher values than the other sectors. A predominance of MCEJ occurrences is observed in the Brazilian (TTB), East African (AAE), and Peruvian (HUA) sectors. We have also observed the CEJ dependence on solar flux with an anti-correlation between ACEJ events and F10.7 are observed especially during a high solar cycle period.

The Surface fCO2 Distribution of the Western North Pacific in Summer 2002 (2002년 여름 북서태평양 표층 해수의 이산화탄소 분포 특성)

  • Choi, Sang-Hwa;Kim, Dong-Seon;Shim, Jeong-Hee;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2006
  • We measured the fugacity of $CO_2$ $(fCO_2)$, temperature, salinity, nutrients and chlorophyll a in the surface water of the western North Pacific $(4^{\circ}30'{\sim}33^{\circ}10'N,\;144^{\circ}20'{\sim}127^{\circ}35'E)$ in September 2002. There were zonally several major currents which have characteristics of specific temperature and salinity (NECC, North Equatorial Counter Current; NEC, North Equatorial Current; Kuroshio etc.). Surface $fCO_2$ distribution was clearly distinguished into two groups, tropical and subtropical areas of which boundary was $20^{\circ}N$. In the tropical Int surface $fCO_2$ was mainly controlled by temperature, while in the subtropical area, surface $fCO_2$ was dependent on total inorganic carbon contents. Air-sea $CO_2$ flux showed a large spatial variation, with a range of $-0.69{\sim}0.79 mmole\;m^{-2}day^{-1}$. In the area of AE (Anticyclonic Eddy), SM(Southern Mixed region) and NM (Northern Mixed region), the ocean acted as a weak source of $CO_2$ $(0.6{\sim}0.79 mmole\; m^{-2}day^{-1})$. In NECC, NEC, Kuroshio and ECS (East China Sea), however, the fluxes were estimated to be $-0.3mmole\; m^{-2}day^{-1})$ for the first three regions and $-1.2mmole\; m^{-2}day^{-1})$ for ECS respectively, indicating that these areas acted as sinks of $CO_2$. The average air-sea flux in the entire study area was $0.15mmole\;m^{-2}day^{-1})$, implying that the western North Pacific was a weak source of $CO_2$ during the study period.

PRELIMINARY STUDY ON THE ABRUPT DENSITY ENHANCEMENT IN LOW LATITUDE REGION DETECTED BY KOMPSAT-I (KOMPSAT-I으로 관측한 저위도 이온층 밀도 급상승 현상에 대한 연구)

  • 박재홍;이재진;이은상;민경욱
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2003
  • SPS(Space Physics Sensor) onboard the KOMPSAT-I, which was launched at 1999, had transmitted ionospheric plasma density and electron temperature during the solar maximum from June 2000 to August 2001, SPS IMS onboard KOMPSAT-I occasionally detected abrupt plasma density enhancement in low-latitude region, in which the plasma density abruptly increases in a narrow region. Statistical analysis of the data obtained during the entire operational period shows that the occurrence probability of these events has its peak value at the Atlantic region and at the Hawaiian region where the geomagnetic field strength is weak. And the occurrence frequency has no correlation with Dst index or F10.7 index. The correlation between plasma density and the electron temperature shows a wide variety, but the anti-correlated cases are dominant.

Low Latitude Plasma Blobs: A Review

  • Kim, Vitaly P.;Hegai, Valery V.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • In recent years, there has been renewed activity in the study of local plasma density enhancements in the low latitude F region ionosphere (low latitude plasma blobs). Satellite, all-sky airglow imager, and radar measurements have identified the characteristics of these blobs, and their coupling to Equatorial Plasma Bubbles (EPBs). New information related to blobs has also been obtained from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. In this paper, we briefly review experimental, theoretical and modeling studies related to low latitude plasma blobs.

Gadanki radar observations of F-region irregularities during June solstice of solar minimum: First results and preliminary analysis

  • Kumar, D.V. Phani;Patra, A.K.;Kwak, Y.S.;Pant, T.K.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.38.1-38.1
    • /
    • 2009
  • In this paper we present the first results of summer-time F region irregularities during low solar condition observed using the Gadanki MST radar. Echoes were observed on all 20 nights of radar observations and were mostly confined to the post-midnight hours. Echo morphology is very different from the equinoxial post-sunset plume-like features reported earlier from Gadanki. Echo SNRs are lower by 25 dB than their equinoxial post-sunset counterpart, and are quite comparable to the equinoxial irregularities in the post-midnight hours, which are essentially the decaying post-sunset irregularities. The Doppler velocities, which lie in the range of $\pm$ 100 m s-1, show upward/northward motion of the irregularities during the initial phase in contrast to the observed predominant downward/southward velocities associated with the decaying equinoxial post-midnight F region irregularities. Spectral widths of the summer echoes, which are well below 50 m s-1 and are very similar to those of the decaying equinoxial irregularities, represent the presence of weak plasma turbulence. Simultaneous observations made using a collocated ionosonde show no ionogram trace during 2200-0530 LT except for a few occasions. Weak frequency type spread F observed during midnight hours occurred without prior occurrence of range spread F. Concurrent ionosonde observations made from magnetic equatorial location Trivandrum also show very similar result and thus no height rise of the F layer during the midnight hours could be monitored. The preliminary analysis suggests that the post-midnight irregularities reported here are mostly freshly generated ones. The observations are discussed in the light of other observational results reported earlier and the current under standing on the post-midnight occurrence F region irregularities in summer.

  • PDF

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.