• Title/Summary/Keyword: equation-of-state effects

Search Result 235, Processing Time 0.031 seconds

RHEOLOGICAL PROPERTIES OF MAGNETIC PARTICLE SUSPENSIONS

  • Kwon, T.M.;Choi, H.J.;Jhon, M.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.667-671
    • /
    • 1995
  • The viscometric technique is used to study the effects of microstructure on the viscosity (viscosity vs. concentration or shear rate) of magnetic particle suspensions. In this characterization, measurement of suspension viscosity is used to obtain the dependence of viscous energy dissipation on microstructural state of dispersions. Microstructural shape effects which are related to particle orientation are then indirectly obtained. Empirical formulas from mean field theory and the Mooney equation, which are applicable at high concentration of magnetic particles, are used to relate viscosity to particle concentration. The validity and physical meaning of these equations are discussed.

  • PDF

The Influence of Tip-mass on Dynamic Characteristics of Rotating Cantilever Pipe Conveying Fluid (유체유동을 갖는 회전 외팔 파이프의 동특성에 미치는 끝단질량의 영향)

  • Yoon, Han-Ik;Choi, Chang-Soo;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1824-1830
    • /
    • 2003
  • The vibrational system of this study is consisted of a rotating cantilever pipe conveying fluid and the tip mass. The equation of motion is derived by using the Lagrange equation. The influences of the rotating angular velocity and the velocity of fluid flow in a cantilever pipe have been studied on the dynamic characteristics of a rotating cantilever pipe by the numerical method. The effects of a tip mass on the dynamic response of a cantilever pipe are also studied. The tip-amplitude and maximum tip-deflection of each direction are directly proportional to the tip mass of the cantilever pipe in steady state. It identifies that the influence of the fluid velocity and the rotating angular velocity of the cantilever pipe give much variation the bending tip-displacement of steady state and the bending tip-displacement of non-steady state, respectively. The influence of the rotating angular velocity gives much the deflection of axial direction.

Finite Element Analysis of Gas Discharge in Transient State Considering Secondary Electron Emission Effects (2차 전자방출 효과를 고려한 기체방전의 과도상태 유한요소해석)

  • Kim, Nam-Kyung;Jeung, Gi-Woo;Choi, Nak-Sun;Lee, Se-Hee;Kim, Dong-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1276-1281
    • /
    • 2010
  • To analyze the gas discharge phenomena in parallel-plane electrodes, the fully coupled finite element method (FEM) considering secondary electron emission effects in discharge column was adopted in this paper. Two coupled equations of the hydrodynamic diffusion-drift equations for three carriers and the Poisson's equation for electric scalar potential should be solved as a system equation. The proposed method including two secondary electron processes of the photoemission and background ionization has been successfully applied to evaluating the breakdown voltage in parallel-plane electrodes and is verified by comparing its numerical results with the experimental ones. From the obtained results, it is inferred that the proposed numerical scheme will be useful for predicting and understanding streamer transient phenomena.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

A Transfer Alignment Considering Measurement Time-Delay and Ship Body Flexure (측정치 시간지연과 선체의 유연성을 고려한 전달정렬 기법)

  • Lim, You-Chol;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.225-233
    • /
    • 2001
  • This paper deals with the transfer alignment problem of SDINS(StrapDown Inertial Navigation System) subjected to roll and pitch motions of the ship. Specifically, to reduce alignment errors induced by measurement time-delay and ship body flexure, an error compensation method is suggested based on delay state augmentation and DCM(Direction Cosine Matrix) partial matching. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then DCM partial matching is properly combined to reduce effects of a ship's Y axis flexure. The simulation results show that the suggested method is effective enough resulting in considerably less azimuth alignment errors.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

The Effects of the STS 304 Hollow Cylinder Property Variations on the Non-Steady Heat Conduction (STS 304 중공 원통의 물성치 변화가 비정상 열전도에 미치는 영향)

  • Lee, S.C.;Choi, H.G.;Seo, J.S.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.39-44
    • /
    • 2004
  • The effects of the STS 304 hollow cylinder property variations on the non-steady heat conduction are considered in this paper. In the non steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity is varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer is so important in case of varying temperature.

  • PDF

A Study of the Pre-Resistance Effects on the Optimization For Performance of the Ignition System with the Breaker Point Type (Breaker Point 型 점火裝置 性能 을 極大化하기 위한 Pre - Resistance 효果 에 對한 硏究)

  • 손병진;신영철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 1982
  • One of factors that affect combustion in the cylinder of the engine is to keep a greater energy in the ignition system to minimize pollutant emissions and to increase its performance of the low temperature. This paper reviews theoretically the state and input variables of the ignition system from the state transition equation. Effects on characteristics of the system such as primary current, secondary available voltage and spark duration by reducing the pre-resistance from 3.5 to 0 ohm in 12V system is experimentally investigated when the ignition coil has a primary resistance of 1.5 ohms ad the dwell angle of the breaker point is 43.2 degrees (0.75 radian). Advantages and limitations for using the low resistance of the primary circuit are also presented to optimize the performance of the ignition system with the breaker point.

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations (반복적인 작동을 위한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.373-379
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors through the Load-Training (하중 트레이닝을 통한 형상기억합금의 특성 실험과 거동 전산 모사)

  • Kim, Sang-Haun;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.700-705
    • /
    • 2007
  • In this study, we observe the application of shape memory alloy(SMA) into smart structures for repeatable actuation, because SMA changes its material properties and characteristics progressively under cyclic loading conditions and finally reaches stable path(state) after a certain number of stress/temperature loading-unloading cycles, so called 'training'. In this paper, SMA wires that have been in a stable state through the training are used. Stress-strain curve of the SMA wire at different temperature levels are measured. In addition, we observe other important effects such as the rate effect according to strain rates for rapid actuation response. The current work presents the experimental test using SMA wire after training completion by mechanical cycling. Through these tests, we measure the characteristics of SMA. With the estimated SMA properties and effects, we compare the experimental results with the simulation results based on the SMA constitutive equations.

  • PDF