• 제목/요약/키워드: equal power distribution

검색결과 80건 처리시간 0.026초

선로간 변압기를 이용한 초전도 병렬회로의 평형 전류분배 (Equal Current Distribution in Superconducting Parallel Circuits Using Multi-Interphase Transformers)

  • 현옥배;최용선;심정욱;김혜림;황시돌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.140-142
    • /
    • 2003
  • Small impedances in the superconducting Parallel circuits cause unequal distribution of the currents in the circuits. This results in Quenches or losses in some superconducting parts. This paper presents the fabrication and test results of a multi-interphase transformers (IPT) for equal current distribution in parallel circuits. Test results show that the IPT can effectively make the current distribution uniform in parallel circuits that have unequal resistances.

  • PDF

The Bahadur Efficiency of the Power-Divergence Statistics Conditional on Margins for Testing homogeneity with Equal Sample Size

  • Kang, Seung-Ho
    • Journal of the Korean Statistical Society
    • /
    • 제26권4호
    • /
    • pp.453-465
    • /
    • 1997
  • The family of power-divergence statistics conditional on margins is considered for testing homogeneity of .tau. multinomial populations with equal sample size and the exact Bahadur slope is obtained. It is shown that the likelihood ratio test conditional on margins is the most Bahadur efficient among the family of power-divergence statistics.

  • PDF

Two tests using more assumptions but lower power

  • Sang Kyu Lee;Hyoung-Moon Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제30권1호
    • /
    • pp.109-117
    • /
    • 2023
  • Intuitively, a test with more assumptions has greater power than a test with fewer assumptions. This kind of examples are abundant in the nonparametric tests vs corresponding parametric ones. In general, the nonparametric tests are less efficient in terms of asymptotic relative efficiency (ARE) compared to corresponding parametric tests (Daniel, 1990). However, this is not always true. To test equal means under independent normal samples, the usual test involves using the t-distribution with the pooled estimator of the common variance. Adding the assumption of equal sample size, we may derive another test. In this case, two tests using more assumptions were performed for univariate (multivariate) cases. For these examples, it was found that the power function of a test with more assumptions is less than or equal to that of a test with fewer assumptions. This finding can be used as an expository example in master's mathematical statistics courses.

Comparison of the Power of Bootstrap Two-Sample Test and Wilcoxon Rank Sum Test for Positively Skewed Population

  • Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제15권1호
    • /
    • pp.9-18
    • /
    • 2022
  • This research examines the power of bootstrap two-sample test, and compares it with the powers of two-sample t-test and Wilcoxon rank sum test, through simulation. For simulation work, a positively skewed and heavy tailed distribution was selected as a population distribution, the chi-square distributions with three degrees of freedom, χ23. For two independent samples, the fist sample was selected from χ23. The second sample was selected independently from the same χ23 as the first sample, and calculated d+ax for each sampled value x, a randomly selected value from χ23. The d in d+ax has from 0 to 5 by 0.5 interval, and the a has from 1.0 to 1.5 by 0.1 interval. The powers of three methods were evaluated for the sample sizes 10,20,30,40,50. The null hypothesis was the two population medians being equal for Bootstrap two-sample test and Wilcoxon rank sum test, and the two population means being equal for the two-sample t-test. The powers were obtained using r program language; wilcox.test() in r base package for Wilcoxon rank sum test, t.test() in r base package for the two-sample t-test, boot.two.bca() in r wBoot pacakge for the bootstrap two-sample test. Simulation results show that the power of Wilcoxon rank sum test is the best for all 330 (n,a,d) combinations and the power of two-sample t-test comes next, and the power of bootstrap two-sample comes last. As the results, it can be recommended to use the classic inference methods if there are widely accepted and used methods, in terms of time, costs, sometimes power.

Effect of Positively Skewed Distribution on the Two sample t-test: Based on Chi-square Distribution

  • Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제14권3호
    • /
    • pp.123-129
    • /
    • 2021
  • This research examines the effect of positively skewed population distribution on the two sample t-test through simulation. For simulation work, two independent samples were selected from the same chi-square distributions with 3, 5, 10, 15, 20, 30 degrees of freedom and sample sizes 3, 5, 10, 15, 20, 30, respectively. Chi-square distribution is largely skewed to the right at small degrees of freedom and getting symmetric as the degrees of freedom increase. Simulation results show that the sampled populations are distributed positively skewed like chi-square distribution with small degrees of freedom, the F-test for the equality of variances shows poor performances even at the relatively large degrees of freedom and sample sizes like 30 for both, and so it is recommended to avoid using F-test. When two population variances are equal, the skewness of population distribution does not affect on the t-test in terms of the confidence level. However even though for the highly positively skewed distribution and small sample sizes like three or five the t-test achieved the nominal confidence level, the error limits are very large at small sample size. Therefore, if the sampled population is expected to be highly skewed to the right, it will be recommended to use relatively large sample size, at least 20.

Fault Analysis Method for Power Distribution Grid with PCS-based Distributed Energy Resources

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.522-532
    • /
    • 2017
  • In this study, we propose a fault analysis method for a power distribution grid with PCS-based DERs. We first explain the characteristics of a PCS-based DER. According to the characteristics, the DER is considered as a current-controlled voltage source, which produces varying voltages within a certain limit so that currents equal to given references flowing from the DER to the grid (currents controlled). So, we introduce the symmetrical equivalent models in the form of varying voltage source for fault analysis and then, construct a convex optimization problem to solve the fault problem associated with the equivalent models and grid conditions. Thus, the proposed method enables to perform a proper fault analysis considering the characteristics of the DER, which are currents controlled, voltage limited, and unity power factor achievement. To verify the validity of the proposed method, we perform computer simulations with the proposed method and with MATLAB Simulink, and the results are compared.

A Study on the Characteristics of Voltage Distribution of Stacked YBCO Coated Conductors in Series Connection

  • Chu, Sung-Yul;Hwang, Young-Jin;Kim, Young-Jae;Ko, Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권4호
    • /
    • pp.25-28
    • /
    • 2009
  • In order to apply superconducting electric machineries such as a Superconducting Fault Current Limiter (SFCL) to the power grid, the single module should be connected in series to have reasonable size. Superconducting tapes in the module also should be stacked to satisfy requirements such as large operation current of the power grid. This is because a single superconducting tape has restricted applicable current capacity. Moreover especially in SFCL at the fault, there should be equal voltage distribution in series-connected SFCL modules. In this paper, we investigated the voltage distribution in fault current of series-connected YBCO coated conductors (CC). Depending on characteristics of the CC samples such as critical current, even voltage distribution could be achieved or not. In addition, the effect of stacked CC on the change of voltage distribution comparing to non-stack cases in series connection was confirmed by experiments. As the CC stacked, voltage difference could be reduced.

Selective Harmonic Elimination in Multi-level Inverters with Series-Connected Transformers with Equal Power Ratings

  • Moussa, Mona Fouad;Dessouky, Yasser Gaber
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.464-472
    • /
    • 2016
  • This study applies the selective harmonic elimination (SHE) technique to design and operate a regulated AC/DC/AC power supply suitable for maritime military applications and underground trains. The input is a single 50/60 Hz AC voltage, and the output is a 400 Hz regulated voltage. The switching angles for a multi-level inverter and transformer turns ratio are determined to operate with special connected transformers with equal power ratings and produce an almost sinusoidal current. As a result of its capability of directly controlling harmonics, the SHE technique is applicable to apparatus with congenital immunity to specific harmonics, such as series-connected transformers, which are specially designed to equally share the total load power. In the present work, a single-phase 50/60 Hz input source is rectified via a semi-controlled bridge rectifier to control DC voltage levels and thereby regulate the output load voltage at a constant level. The DC-rectified voltage then supplies six single-phase quazi-square H-bridge inverters, each of which supplies the primary of a single-phase transformer. The secondaries of the six transformers are connected in series. Through off-line calculation, the switching angles of the six inverters and the turns ratios of the six transformers are designed to ensure equal power distribution for the transformers. The SHE technique is also employed to eliminate the higher-order harmonics of the output voltage. A digital implementation is carried out to determine the switching angles. Theoretical results are demonstrated, and a scaled-down experimental 600 VA prototype is built to verify the validity of the proposed system.

Step-Up Asymmetrical Nine Phase Delta-Connected Transformer for HVDC Transmission

  • Ammar, Arafet Ben;Ammar, Faouzi Ben
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1920-1929
    • /
    • 2018
  • In order to provide a source for nine phases suitable for 18-pulse ac to dc power, this paper proposes a new structure for a step-up asymmetrical delta-connected transformer for converting three-phase ac power to nine-phase ac power. The design allows for symmetry between the nine output voltages to improve the power quality of the supply current and to minimize the THD. The results show that this new structure proves the equality between the output voltages with $40^{\circ}-{\alpha}$ and $40^{\circ}+{\alpha}$ phase shifting and produces symmetrical output currents. This result in the elimination of harmonics in the network current and provides a simulated THD that is equal to 5.12 %. An experimental prototype of the step-up asymmetrical delta-autotransformer is developed in the laboratory and the obtained results give a network current with a THD that is equal to 5.35%. Furthermore, a finite element analysis with a 3D magnetic field model is made based on the dimensions of the 4kVA, 400 V laboratory prototype three-phase with three-limb delta-autotransformer with a six-stacked-core in each limb. The magnetic distribution flux, field intensity and magnetic energy are carried out under open-circuit operation or load-loss.

비대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석 (Analysis on the Operation Characteristics of Induction Motor Operated by Asymmetric Unbalanced Voltage)

  • 김종겸;손홍관;정종호;이은웅
    • 전기학회논문지P
    • /
    • 제53권2호
    • /
    • pp.58-64
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance is a condition in a polyphase system in which the rms values of the line-to-line voltages or the phase angles between consecutive line-to-line voltages, are not all equal. Slight voltage unbalance generates a disproportionately high current unbalance at the motor stator winding. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.