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Abstract

The family of power-divergence statistics conditional on margins
is considered for testing homogeneity of r multinomial populations
with equal sample size and the exact Bahadur slope is obtained. It is
shown that the likelihood ratio test conditional on margins is the most
Bahadur efficient among the family of power-divergence statistics.
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1. INTRODUCTION

Let X,,.... X, be a sequence of independent »r random vectors with multi-
nomial distribution

PIX, _x]:nvn"“

We can make an r X ¢ contingency table whose row margins are fixed. We
are interested in testing homogeneity of » multinomial populations.

Hy:pjj=p;, t=1,...,r, g=1,...,c

Cressie and Read (1984) proposed the family of power-divergence statistics
2nI* (X" /n, {p,;}) for goodness-of-fit test.
A
(X /T) —1}, —00 < A< 00

where for A = —1,0, the limit as A — —1,0 is used. 2nI*(X"™*“/n,{p;})
covers several test statistics

2nIA(x’x'/n~{ﬁl}) /\(A-f-l ZZ

i=1j=1

A =0 — likelihood ratio statistic
A =1 — chi-square statistic
A = -1 — modified likelihood ratio statistic
A =-1/2 — Freeman-Tukey statistic
A = -2 —— Neyman-modified chi-square statistic.

These test statistics have a limiting chi-square distribution with (r —1)(c—
1) degrees of freedom under the null hypothesis (Read and Cressie 1988, p50).
The question arises the accuracy of the chi-square approximation over the
parameter space, because the exact distribution of 2nI*(X"*“/n, {p;}) under
the null hypothesis depends on nuisance parameters. Loh (1989,1993) showed
that the limiting sizes (the supremum of the probability of type I error over
the parameter space) of the chi-square test (A = 1) and the likelihood ratio
test (A = 0) are always greater than the nominal level. Since conditioning
is a standard way of eliminating nuisance parameters in contingency tables,
2nI*(X"*“/n,{p,;}) conditionally given the column margins (the sufficient
statistics for the nuisance parameters under the null hypothesis) is suggested
to remove dependency on nuisance parameters. From now, conditional power-
divergence statistics means power-divergence statistics conditional on column
margins.
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Kang (1997) developed the Bahadur efficiency for conditional tests and
obtain the Bahadur efficiency of the conditional likelihood ratio test relative
to the conditional chi-square test of independence in two-way contingency ta-
bles. Cressie and Read (1984) showed that, in unconditional case, no member
of the power-divergence family can be more Bahadur efficient than the likeli-
hood ratio test (A = 0) when hypothesized model does not require parameter
estimation.

The aim of this study is to obtain exact Bahadur slope of the conditional
power-divergence statistics and show that the conditional likelihood ratio test
is the most Bahadur efficient among the family of the conditional power-
divergence statistics.

2. BAHADUR EFFICIENCY FOR CONDITIONAL TESTS

In this section we develop Bahadur efficiency for conditional tests like
unconditional cases. Let X, X,,..., X, be a sequence of independent, iden-
tically distributed random variables whose common probability distribution
is Py where 6 = (n,v) € ©, n is a p-dimensional vector in A, ¢ is a ¢-
dimensional vector in V. Let Ay be a proper subset of A. Let ©p = {6 =
(T),’(/)) NS Ao,’(/) € \I’} and 91 =0 - 60.

For testing Hy : 8 € ©, with a nuisance parameter v, let S, and T, be two
statistics. We are interested in assessing the performance of the conditional
statistic S, |T, for testing Hy as n — oo. Assume that large values of S, are
significant.

Let conditional sizes and conditional type II error probabilities be

a, (’Tn) = 0S€uep P0(Sn > SulTn) and ﬂn (olTn) = Pﬂ(sn S snIT'n)-
0

Definition. For 8, € ©,, let the critical value s, = s,(6;) so that

B"—(allzl) = P0| [Sn S S,,(OI)IT',,] fﬂ) /3(01)7 0 < :3(01) < 1

The sequence of the conditional test statistics S, |7, has exact Bahadur slope
[4 (01) lf

1 Py, 1
- In(a, (6:|T,.)) — 50(91)
as n — oo for 8, € ©,, where

a, (01|Tn) = Sup P9() [S" Z Sn (OI)IT:"]
€6
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Py, . e
and — means convergence in probability.

Definition. For two sequences of conditional test statistics {S{)|T(},i =
1,2, we define

c1 (61)

(&)} (01)

as the Bahadur efficiency of {S{V|T()} relative to {S{?|T:®} at 6, for every
0, € O,.

ez (61) =

3. PRELIMINARY RESULTS

We introduce a result on the limiting form of the conditional distribu-
tion. Suppose that a random vector (U,,V, ) converges in distribution to
a random vector (U, V). Steck (1957, p247-248 and p254) gives a sufficient
condition that the conditional distribution of U,,, given V,, = v,,, converges
in distribution to the conditional distribution of U, given V =v asv, — v.
We use his result to obtain the limiting conditional distribution. We restate
Steck’s result using our notation. ‘ '

Suppose, for k = 1,...,n, that we observe a sequence of independent r X c
random matrices

X0 1LE ... X™[1,¢ k]

X1,k ... X®r e k]

Let

r

X4, H] = X5k, G =101
i=1

and define, for k = 1,...,n, the column vectors
XY pp = (X[ 1k X e — 1 R])

Without loss of generality we assume all the random variables have zero
means. We introduce notation to use Steck’s result. Let

A('"‘)[i,j, +] — {Z E(X(")[i,j, k‘])2}1/2,
k=1

YU, 5+ = S XM, 5, k)/AM [, 5, +],

k=1
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n

AP = (B 5 R,
k=1

T

YO b g+ = 3 X[+, 5,k/A% [+,4, 4],

k=1
and
YU o= (YL L4 YO e+, Y2, 1,4,
Y(")[Z, ey Fy ey Y(")[r, L+],..., Y("’)[r, c, +])'
Yf}c~l),+ = (Y(")[—h 1’ +]’ s ’Y(")H—’ ¢ — 1’ +])L
7 X™1,1, K X1, e, k] X™[2,1,k] X™[2, ¢, k]
k AL, 4] A, e, 4] AM[2,1,4]7 77 AM[2, ¢, +]’

X™M[r 1, k] X0 [r, e, k] X[+, 1,k X4+, ¢~ 1,8\
A L) AW e, 4] AW+, 1, 4] A [ e — 1, 4]

(n) ) )
70— ((Y(r:()*)’,(Y+.((;_1),+)'> .

We denote the covariance matrix of Z") by Q,. Let Q,,; = Var(YE:,'.zf)nL),
Quiz = Cov(Y (), ,Y{|_y),) and Quz = var(YV) ) ), then

_ inl in2
Q’" B ( Q::lZ Qn22 ) (31)

If Q,, tends to a fixed nonnegative definite matrix Q, we will let Q,;, Q12, and
Q22 be corresponding limits of Q,11, Q.12, and Q.22 respectively. Using the
above notation we have the following theorem.

Theorem 1. (Steck 1957, p244) Assume that

1. X(;I.)(c—l)‘l.: is distributed on a lattice with positive maximum span h =
(h41€1,...,hy (—1)€.—1) Which is independent of k£ and n, where hy; is
the maximum span of X ) [+, j k] and e; = (0, ..., \1/ -, 0).

2 i—th.coordinale

lim inf{A("')[i,j,+] i=1,...,rj=1,...,¢} = 0.

n—00

lim inf{A®™[+,5,+]:j=1,...,c - 1} = o0.

71— 00
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"

Jim (H A+, +]) expl- 3 a(k)] =0,

k=1

where a(k) is the indicated positive constant for the characteristic func-
tion of Z") in the sense of Lemma 2.4 in Steck (1957).

4. Q, converges to a fixed nonnegative definite matrix Q for which Q5 is
positive definite.

5. For some & > 0, lim, o, ¥7_, E|Z{")|>** = 0 and

limsupsupsupnE|X ™ [+, j,k]|1*** /(A" [+, 5, +])? < C; < 0.
n b k

Then
lim |w,(a,v) - w(a,v)| =0,

n-—00

uniformly on bounded subsets of A, , where

e w,(a,Vv) is the conditional characteristic function of Y’

) (re).+?
Y+,(c—1).+ =V,

given

()

e A, is the set of possible values of Y Folem1)4

o w(a,v) = exp{ia'Q12Q% vV — }a'Qu 20},
® Qi12=0Q — Q12Q2—21Qt12-

The conditional probability distribution of X"*° under the alternative,
given the margins X,; =37, X;;,7 =1,...,c— 1, is a noncentral multivari-
ate hypergeometric distribution (Cornfield 1956). We will prove asymptotic
normality of the distribution using Steck’s result.

Theorem 2. Let

X
Zi(]fl) — __\_/_—L_ (_J - ‘J) for i= 1, , Ty J = 1, , C,
pii(l1—pi) \ ™
n X, r ‘
Z-ﬁ—l): \/ﬁ < +.}_Zp“) for J:l,.'_,c._.l,
' r n .
\/Z'izlp'ij(l - Pij) i=1
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and let
200, = (20,20, 22,2, 2, 2ty
Z) = (2%, Z8) )
R, = {T(") =C < Z‘(;lj) <Cj=1,...,¢c— 1}
where

n n

T(n) — <X+1 X-f—,(:—l)t

and C is a sufficiently large real number.

Then, the conditional distribution of Z( o given T = t™) ¢ ¢ R,
converges in distribution as n goes to oo to the rc¢ dimensional multivariate
singular normal distribution with mean vector u and covariance matrix ;; ,,
where 1 and X;; 5 can be obtained from Theorem 1.

Proof. For t, € R,, the condition T, = t, implies that each element of
Z(+ is bounded by definition of R,. We check the conditions of Theorem 1to
obtain the limiting distribution of the conditional distribution of Z(r <) given

that each element of Z£+ is bounded.
Define X[, j, k], fori=1,...,r,j=1,...,c to be

‘ 1 —p;; if an observation of ith multinomial trial in the
X ™V, g, k| = kth trial belongs to the jth column category
—Dij otherwise.

Note that X i, j, k] does not depend on n and k. From the definition of
X ™3, j, k], we can further define X ) [+, 5, k], X(J:'(r k-
Then

A, 4] = D" E[X", 5, kP2 = [npi; (1 — pij)]/?
=1

A(")["}‘,j, +] = [’n Zp”(l - p,-j)]l/z for J = 1, o, C— 1

nyf: - - n)f: n)f: - \/E Xt n
YO, 5,4 = 3 X4, kA g 4] = o= (22 =, ) = 2
k=1 pl?(l - pz])

y(")[.{..,j,-{-] =2y, forj=1,...,¢-1
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Since two sets of notation match, the conditional distribution of Y((:,'},) given

Yﬂ'_)(c_l)_ 4+ = V is the same as the conditional distribution of ZE:,'"{) given
ZV) =v |
+e = V.

For condition 1 of Theorem 1, since X ")[+, , k] do not depend on k and
n, neither do X(:_)((,_l).k. Hence, h is independent of & and n. Condition 2 is
trivially satisfied.

For condition 3, note that positive constant a(k) is the indicated constant

for the characteristic function of Z("). Since Z!") does not depend on k,
a(k) = a independent of k. Thus,

lim (TI Jn S pu(l- pin) exp[— Y a(k)] = 0.

j=1 i=1 k=1

For condition 4, @, does not depend on n and so is a limiting moment
matrix Q. Since b'Z{") does not have a degenerate distribution for any b’ # 0,
Q12 is positive definite.

For condition 5, take § = 1. Since by straightforward calculation,

(X(")[i,j, k]>3 _ 1-— 2pij
A(v')[Z’J,_'_] n3/2\/pij(1 _ pij)’

: 3 .
<X(")[+,J, k]) _ Ziea( = py)(A = 2pi)pys
A(")H_’ Js +] (n Yoy pi(1 — pi,i))3/2
does not depend on k, lim, _,,, >}_; E|Z,(‘,")|3 = 0. Since

nE|X™ [+, 5, k] _ Y1 (1= pi;)(1 = 2py;)py;
(AU [+, 5, +])? Si=1(1 — pij)pij

does not depend on % and n, condition 5 is satisfied.

4. MAIN RESULT

First, we let the conditional type II error probability go to 3,0 < 8 < 1,
as n — oo, under the alternative hypothesis.

Lemma 1. Under the alternative hypothesis, for t, € R, , if we take critical

value
— A
Snt,.p = Zri\/n\/Wf,,Eu.ng +Vnwip +nJ,
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then
B.(plt,) — B, 0<B<1,

where

R
+ o(1), P.f:;zpm
i=1

and w,, is rc¢ dimensional column vector such that

pt pl pL p +01 +pt n
ZZV J J J J )) 7]Z() Iz(

A(/\ +1) 35 (p, +o(1))* i (ro)

and z4 is 1008% percentile of the standard normal distribution with0 < 8 < 1
and p and X, 5 are from Theorem 1.

Proof.

1
—21A(X”",{ﬁf}), given t, € R,

_WTI _)
" n vn
from .'17 = 1 + AT + O(l‘) and XIJ = TLPU + \/ﬁﬂpu(l - pU)Zl(;L)
Xij/(nr) =p; +o(1). :

From theorem 2, the result is obtained.

Let
1 ! T €T A
D* — - LY} 4__ _1 > t = _1 ,
- {HEER ) 258 () -
CyTiipi(l—py) 1’“_,0}

ij \/H s J

pO P, A c
ZZ;D” [(p’) —1J >ZZPU [ _’> —1}, doph=1,0<p) < 1}
i=1j5=1 7

i=1j=1 i=1

(2 ) -1 2355, |(22) -1 +o)
t1,1n i/T i=1j-1 j

(n)
Z(r c) + 0!‘(

1 r r

i=1 i=1
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where o(1) depends on t, and x is an r x ¢ table whose element z;; is an
integer 0 < z;; < n, (z%,,...,2%,) are given column margins for t, € R,,.

Lemma 2.

lim inf {ZZp,,(,,) In (pu(,. ) .p e D;}
n— 00 p

i=1j 2

1nf{22p”ln< ) P ED}

i=1lj

The proof can be done using the similar argument of Bahadur’s result
(1971, p17-18).

Lemma 3. Forgiven t, € R,,
.. 1
Jim iné {g,(c,t,) s —x € D, (t)]

= ,}L% inf {Zzpu(n)ln( k) ) pn € D }

i=1j

where

c

aa(%,t,) = ZZ( ) ( - ) ~ S r5In(5;) +0(1).  (4.2)

i=1j=1 j=1

For proof, see Kang (1997, Lemma 4.3).

Theorem 3. The exact Bahadur slope of the conditional power-divergence
statistic for the test of homogeneity of » multinomial populations is

i=1j

2inf{zzp,,1n (p”) :p°e D}

where

_ 1
= ;;pij-

Proof. Lemma 1 implies that the conditional type II error probability goes
to 8 under the alternative hypothesis, if the rejection region is

1 rxe g~
Dut) = {x[2P e (51 2 e |
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- {—x, l,zln [( :/7"> _

¢ r
=n,i=1 —z,,i=1
Ty =n,1=1,...,7T, mij—$+j,j— sy C Py
i=1

i=1

>3 p, [(p)A - 1} +o(1),

i=14=1

where o(1) depends on t, and x is an r X ¢ table whose element z;; is an
integer 0 < z,;; <n, (z%,,...,2},) are given column margins for t, € R,,.
We investigate the rate at which the conditional size converges to zero.

Fort, € R,
[ (n))" TI 2y (z451) ]
() oy T2y !

a(plt.) = Z

XG D,

Since
1

sup { ( n(:z)") ;{Iil 11'[(7?;), x € D, (t,,)} < a(plt.)
< Tsup{ GURUEICIED
- (nr)H o, T2y 4!

where 7 is the cardinality of set D, (t,),

1

x €D, (t")}

1
— lim ~In(a(plt.))
n— 00 n

_ (n!) HJ 1(@451)
= ot {-Dn |

provided we prove In(r)/n — 0 as n — oo.
From Stirling’s formula In(m!) = m In(m)—m+o(m), and t,, € R, implies
z4;/n =rp; + o(1),

i [ () T (a4, l
(nr) Ty [T q 45!
= 35 % (%) - S o) + o)
= g,,(x,t,,)

Therefore, for t, € R,,, by Lemma2 and Lemma3,

1 1
— lim T—lln(a(plltn)) = lim inf {gn (x,t,): —x € D, (t,,_)}
7n— 00 7 — OO n
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= "].erololnf{ZZp”")ln( . )pSGD:}

i=1j=1

- mf{zzp,,m (p") .p° e D}

i=14=1

Since P(R,) — 1, as n — o0,

=1 j=1

:}L%%lnw(pm))Linf{zzn,ln( ) p’ GD}

*

We complete proof by showing lim, %IH(T) =0. 7 < 7%, where 7* is

cardinality of
1 -
—X Z:L‘,-J-:n,iZI,...,c
no | ‘

From Feller (1957, p39), we can show lim,_ o - In(r*) — 0 easily by using
Stirling’s formula.

The right hand side of nonlinear constraint in D is always nonnegative
(Read and Cressie 1988, p110) and vanishes when A = 0. Therefore, the
exact slope has the maximum at A = 0 (the conditional likelihood ratio test).

The conditional likelihood ratio test is more Bahadur efficient than 2nI1*
(X *¢/n,{p,;}) which Read and Cressie (1988) advocate.
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