• Title/Summary/Keyword: epoxy shear key

Search Result 14, Processing Time 0.017 seconds

An experimental study for shear loading capacity of segmental members depending on various types of shear connector (전단연결부 형상에 따른 분절부재의 전단내하력에 대한 실험적 연구)

  • Han, Man-Yup;Kang, Tae-Heon;Shin, Jae-Woo;Jin, Kyung-Suk;Kang, Sang-Hun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.158-161
    • /
    • 2006
  • The numerical analysis and the experiment was performed to investigate the influences of shear connector on shear resistance capability. The numerical analysis's results should that the H/B ratio of shear key is more effective than angle of shear key against shear strength and shear behavior, and it is more desirable to use a half of the H/B ratio of shear key. The specimen was made with same condition as AASHTO recommended. There model tests were performed under various form of shear key, number, arrangement reinforcement and condition using epoxy. As a result of the experiment, there is little difference(or there is no difference) between the case of using epoxy on shear connector and the unused case.

  • PDF

Cracking of a prefabricated steel truss-concrete composite beam with pre-embedded shear studs under hogging moment

  • Gao, Yanmei;Zhou, Zhixiang;Liu, Dong;Wang, Yinhui
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.981-997
    • /
    • 2016
  • To avoid the cracks of cast-in-place concrete in shear pockets and seams in the traditional composite beam with precast decks, this paper proposed a new type of prefabricated steel truss-concrete composite beam (ab. PSTC beam) with pre-embedded shear studs (ab. PSS connector). To study the initial cracking load of concrete deck, the development and distribution laws of the cracks, 3 PSTC beams were tested under hogging moment. And the crack behavior of the deck was compared with traditional precast composite beam, which was assembled by shear pockets and cast-in-place joints. Results show that: (i) the initial crack appears on the deck, thus avoid the appearance of the cracks in the traditional shear pockets; (ii) the crack of the seam appears later than that of the deck, which verifies the reliability of epoxy cement mortar seam, thus solves the complex structure and easily crack behavior of the traditional cast-in-place joints; (iii) the development and the distribution laws of the cracks in PSTC beam are different from the conventional composite beam. Therefore, in the deduction of crack calculation theory, all the above factors should be considered.

Shear Resistance Evaluation of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 전단내력 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5290-5298
    • /
    • 2013
  • In order to apply a mechanical deck joint to the prefabricated steel grid composite decks, shear resistance of a joint composed of concrete shear key and high-tension bolt is experimentally evaluated by the push-out test. Shear resistance evaluated by the test is compared with resistance estimated by empirical and design equations based on the shear friction theory. Test results show that joint specimens bonded by epoxy have about 10% more shear resistance than specimens with strengthened shear key by steel plates, but in the case of specimens with strengthened shear key there is smaller resistance deviation than specimens bonded by epoxy. In comparison with resistances estimated by empirical and design equations, the deck joint can be safely designed. But because the existed shear resistance of deck joint is underestimated by the ACI-318, application of the LRFD design equation could be more reasonable.

An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges (초고성능 프리캐스트 콘크리트 세그멘탈 교량 접합부에 대한 실험 연구)

  • Lee, Chang-Hong;Chin, Won-Jong;Choi, Eun-Suk;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.235-244
    • /
    • 2011
  • Failures of segmental bridges have been attributed to the inadequate joint connection techniques, which led to corrosion of the post-tensioned tendons connecting the segmental joints. The principal objective of this study is to evaluate the performances of the in-situ cast joint and epoxy applied shear key joints as a function of shear and ultimate strengths. Furthermore, shear behavior and strength of shear key joints in ultra high performance precasted concrete segmental bridges are experimentally evaluated to understand its shear failure behavior. The test parameters of shear key shape and type, load-displacement relations, cracking behavior, concrete strength, and fracture modes are considered in the study. Also, several parameters which influence the mechanical behavior of the shear key joint are analyzed. Based on the study results, the optimal shear key shape and joint type are proposed for the joint design and analysis guidelines.

An Experimental Study to Prevent Debonding Failure of RC Beams Strengthened with GFRP Sheets (유리섬유시트로 휨보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.677-684
    • /
    • 2007
  • This study investigates the failure mechanism of RC beams strengthened with GFRP (glass fiber reinforced polymer) sheets. After analyzing failure mechanisms, the various methods to prevent the debonding failures, such as increasing bonded length of GFRP sheets, U-shape wrappings and epoxy shear keys are examined. The bonded length of GFRP sheets are calculated based on the assumed bond strengths of epoxy resin. The U-shape wrappings are either adopted at the end or center of the CFRP sheets bonded to the beam soft. The epoxy shear keys are embedded to the beam soft to provide sufficient bond strength. The end U-wrappings and the center U-wrappings are conventional, while epoxy shear keys are new details developed in this study. A total six half-scale RC beams have been constructed and tested to investigate the effectiveness of each methods to prevent debonding failure of GFRP sheets. From the experimental results, it was found that increasing bonded length or end U-wrappings do not prevent debonding failure. On the other hand, the beams with center U-wrappings and shear keys reached an ultimate state with their sufficient performance. The center U-wrappings tended to control debonding of the longitudinal GFRP sheets because the growth of the longitudinal cracks along the edges of the composites was delayed. In the case of shear keys, it was sufficient to prevent debonding and the beam was failed by GFRP sheets rupture.

Improvement of Mechanical and Interfacial Properties of Carbon Fiber/Epoxy Composites by Adding Nano SiC Fillers (나노 SiC 입자의 형상에 따른 탄소섬유 강화 에폭시 복합재료의 기계적 및 계면 물성 변화 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Kim, Je-Jun;Jang, Key-Wook;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Epoxy matrix based composites were fabricated by adding SiC nano fillers. The interfacial properties of composites were varied with different shapes of SiC nano fillers. To investigate the shape effects on the interfacial properties, beta and whisker type SiC nano fillers were used for this evaluation. The dispersion states of nano SiC-epoxy nanocomposites were evaluated by capacitance measurements. FE-SEM was used to observe the fracture surface of different structures of SiC-epoxy nanocomposites and to investigate for reinforcement effect. Interfacial properties between carbon fiber and SiC-epoxy nanocomposites were also evaluated by ILSS (interlaminar shear strength) and IFSS (interfacial shear strength) tests. The interfacial adhesion of beta type nanocomposites was better than whisker type.

Effect of Shear Key and Edge Length of Near Surface-Mounted FRP Plate in Concrete (콘크리트에 표면매입 보강된 FRP판의 전단키 및 연단거리 효과)

  • Seo, Soo-Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • This paper presents a bond test to find the effect of shear key and edge length from the bonded FRP in near surface-mounted(NSM) retrofit using FRP plate. Main parameters in the test are the location and size of shear key and the edge length. For the test, 10 specimens were made by embedding FRP plate of $3.6mm{\times}16mm$ into $400mm{\times}200(300)mm{\times}400mm$ concrete block and fixing it by using epoxy. Tensile load was applied to the FRP of the specimens until failure and was recorded at each load increase. In addition, the bond slip and elongation of FRP were measured during the test. From the test, it was found that the further the shear key located from the loading, the higher strength we could get. The bond strength inversely depended on the size of shear key. Especially, when the size of shear key was to be lagger than certain size, the bond strength decreased to very low value; even less than that of the case without shear key. The bond strength somewhat increased corresponding to the increase of edge length from the bonded end of FRP to loading in spite of same bond length. The bond-slip between FRP and concrete governed overall deformation in the bond test of NSM FRP so that the effect of excessive slip is necessary to be considered in the design.

Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin (광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성)

  • Sim, Ji-hyun;Kim, Ji-hye;Park, Sung-min;Koo, Kwang-hoe;Jang, Key-wook;Bae, Jin-seok
    • Textile Coloration and Finishing
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

A Study of Mechanical Interfacial Properties of Carbon Nanotube on Carbon Fiber/Epoxy Resin Composites (탄소나노튜브로 표면처리 된 탄소섬유/에폭시 수지 복합재료의 기계적 특성 연구)

  • Hong, Eunmi;Lee, Kyuhwan;Kim, Yangdo;Lim, Dongchan
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.223-228
    • /
    • 2013
  • In this work, the grow of carbon nanotube (CNT) on carbon fiber was introduced on PAN-based carbon fibers for the enhancement of mechanical interfacial strength of carbon fibers-reinforced composites. The surface properties of carbon fibers were determined by scanning electron microscopy (SEM) and mechanical interfacial properties of the composites were studied by interlaminar shear strength (ILSS). From the results, it was found that the mechanical interfacial properties of CNT-carbon fibers-reinforced composites (CNT-CFRPs) enhanced with decreasing the CNT content. The excessive CNT content can lead the failure due to the interfacial separation between fibers and matrices in this system. In conclusion, the optimum CNT content on carbon fiber surfaces can be a key factor to determine the mechanical interfacial properties of the CNT-CFRPs.

Micro-silica Mixed Aqua-epoxy for Concrete Module Connection in Water : Part 2 - Structural Application and Evaluation (해상 프리캐스트 콘크리트 부유체 모듈 가접합을 위한 마이크로 실리카 혼입 수중용 에폭시 접합 성능 검토 : Part 2 - 구조 접합 성능 평가)

  • Choi, Jin-Won;You, Young-Jun;Jeong, Youn-Ju;Kwon, Seung-Jun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.29-35
    • /
    • 2015
  • Recent studies to develop Very Large Floating Structure(VLFS) has shown that the construction procedure of the structure needs to acquire precast concrete module connection system using prestressing. However, the loads occurring on water are complex combinations of various condition, so the safe and stable performance of the module joints and bonding materials are key to the success of the construction. Therefore, micro-silica mixed aqua-epoxy development was introduced in Part 1 using a bonding material developed in this study. The performance of the micro-silica mixed aqua-epoxy(MSAE) applied joint of concrete module specimens connected by prestressing tendon was evaluated to verify the usability and safety of the material. RC beam, spliced beam connected by prestressing tendon and MSAE, and continuous prestressed concrete beam were tested for their initial cracking and maximum loads as well as cracking procedure and pattern. The results showed that the MSAE can control the stress concentration effect of the shear key and the crack propagation, and the maximum load capacity of MSAE joint specimens are only 5% less than that of continuous RC specimen. The details of the study are discussed in detail in the paper.