• Title/Summary/Keyword: enzyme kinetics

Search Result 223, Processing Time 0.025 seconds

글루타치온 생산효소( $\gamma$-Glutamylcysteine Synthetase)와 그 변이효소의 구조분석 및 반응 Kinetics 연구

  • Yang, Hye-Jeong;Gwon, Dae-Yeong
    • Bulletin of Food Technology
    • /
    • v.17 no.4
    • /
    • pp.98-106
    • /
    • 2004
  • Two mutant enzymes of $\gamma$-glutamylcysteine synthetase ($\gamma$-GCS) which catalyzed the synthesis of $\gamma$-glutamylcysteine from L-glutamic acid and L-cysteine in the presence of ATP, were prepared bypoint mutation of $\gamma$-GCS gene with site-directed mutagensis in E. coli. Conformational structuresand catalytic reaction kinetics of mutant enzymes were compared with wild type $\gamma$-GCS afterpurification. The S495F mutant enzyme (serine at 495 residue was substituted with phenylalanine),which had no catalytic activity for $\gamma$-glutamylcysteine synthesis, rarely folded even in neutral pH.However, the mutant A494V (alanine of 494 residue was replaced by valnine) which showed 50 %increase of activity, had a high folding structure. The folding structure of A494V also more stable athigh temperature and extreme pH compared to wild type and S495F. Reaction kinetics of wild typeand A494V were also investigated, Km value of A494V was smaller than that of wild type, while itshowed a little difference at Vmax values. This result evolved that alanine at 494 may be involved inbinding site of substrate rather than catalytic site. In addition, change of catalytic activity by onepoint mutation was highly correlated with the folding structure of enzyme.

  • PDF

Effect of Hydroquinone on Ruminal Urease in the Sheep and its Inhibition Kinetics in vitro

  • Zhang, Y.G.;Shan, A.S.;Bao, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1216-1220
    • /
    • 2001
  • Effect of hydroquinone (HQ) on rumen urease activity was studied. Hydroquinone at concentrations of 0.01 ppm, 0.1 ppm, 1 ppm, and 10 ppm inhibited urease activity of intact rumen microbes in vitro by 25%, 34%, 55% and 64% respectively. In the presence of low concentrations of $\beta$-mercaptoethanol, rumen urease could be solubilized and partially purified. The Km for the enzyme was $2{\times}10^{-3}$ M with Vmax of $319.4{\mu}moles/mg$ min. The kinetics of inhibition with partially purified rumen urease was investigated. The result showed that the inhibitory effect was not eliminated by increasing urea concentrations indicating a noncompetitive effect in nature with an inhibition constant $1.2{\times}10^{-5}$ M. Hydroquinone at the concentration of 10 ppm produced 64% urease inhibition, did not affect ruminal total dehydrogenase and proteolytic enzyme (p>0.05), but increased cellulase activity by 28% (p<0.05) in vitro. These results indicated that hydroquinone was a effective inhibitor of rumen urease and could effectively delay urea hydrolysis without a negative effect. The inhibitor appeared to offer a potential to improve nitrogen utilization by ruminants fed diets containing urea.

Nonclassical Chemical Kinetics for Description of Chemical Fluctuation in a Dynamically Heterogeneous Biological System

  • Lim, Yu-Rim;Park, Seong-Jun;Lee, Sang-Youb;Sung, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.963-970
    • /
    • 2012
  • We review novel chemical kinetics proposed for quantitative description of fluctuations in reaction times and in the number of product molecules in a heterogeneous biological system, and discuss quantitative interpretation of randomness parameter data in enzymatic turnover times of ${\beta}$-galactosidase. We discuss generalization of renewal theory for description of chemical fluctuation in product level in a multistep biopolymer reaction occurring in a dynamically heterogeneous environment. New stochastic simulation results are presented for the chemical fluctuation of a dynamically heterogeneous reaction system, which clearly show the effects of the initial state distribution on the chemical fluctuation. Our stochastic simulation results are found to be in good agreement with predictions of the analytic results obtained from the generalized master equation.

Kinetics of Enriched Chitinase as Extracellular Metabolite in Beauveria bassiana

  • Mondal, Subhoshmita;Datta, Siddhartha;Mukherjee, Alakananda;Bhattacharya, Pinaki
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.96-104
    • /
    • 2019
  • Beauveria bassiana, one of the most common entomopathogenic fungi, has been isolated, pre defined and characterized in-house from soil of tea cultivation area. Experiments have been performed to verify the presence of chitinase as intracellular metabolite and its release as extracellular product rendering the spores with biopesticide activity. Although there are many responsible enzymes for the pest killer action of B. bassiana, binding property of chitinase depending on presence as well as absence of serine supplemented in the media has been studied with respect to the production and kinetics. A programmed investigation conclusively indicates that the isolated spore (hyphae) of B. bassiana has been metabolically enriched with the enzyme chitinase in presence of an externally added amino acid serine with its inhibitory kinetics.

In Silico Analysis of Lactic Acid Secretion Metabolism through the Top-down Approach: Effect of Grouping in Enzyme kinetics

  • Jin, Jong-Hwa;Lee, Jin-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.462-469
    • /
    • 2005
  • A top-down approach is known to be a useful and effective technique for the design and analysis of metabolic systems. In this Study, we have constructed a grouped metabolic network for Lactococcus lactis under aerobic conditions using grouped enzyme kinetics. To test the usefulness of grouping work, a non-grouped system and grouped systems were compared quantitatively with each other. Here, grouped Systems were designed as two groups according to the extent of grouping. The overall simulated flux values in grouped and non-grouped models had pretty similar distribution trends, but the details on flux ratio at the pyruvate branch point showed a little difference. This result indicates that our grouping technique can be used as a good model for complicated metabolic networks, however, for detailed analysis of metabolic network, a more robust mechanism Should be considered. In addition to the data for the pyruvate branch point analysis, Some major flux control coefficients were obtained in this research.

Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity Toward 2'-Fluoro-2'-Deoxynucleoside

  • Yoo, Yeon-Jin;Choi, Kang-Hyun;Kim, Byoung-Kyun;Choi, Si-Sun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1041-1046
    • /
    • 2022
  • Nucleoside deoxyribosyltransferase (NDT) is an enzyme that replaces the purine or pyrimidine base of 2'-deoxyribonucleoside. This enzyme is generally used in the nucleotide salvage pathway in vivo and synthesizes many nucleoside analogs in vitro for various biotechnological purposes. Since NDT is known to exhibit relatively low reactivity toward nucleoside analogs such as 2'-fluoro-2'-deoxynucleoside, it is necessary to develop an enhanced NDT mutant enzyme suitable for nucleoside analogs. In this study, molecular evolution strategy via error-prone PCR was performed with ndt gene derived from Lactobacillus leichmannii as a template to obtain an engineered NDT with higher substrate specificity to 2FDU (2'-fluoro-2'-deoxyuridine). A mutant library of 214 ndt genes with different sequences was obtained and performed for the conversion of 2FDU to 2FDA (2'-fluoro-2'-deoxyadenosine). The E. coli containing a mutant NDT, named NDTL59Q, showed 1.7-fold (at 40℃) and 4.4-fold (at 50℃) higher 2FDU-to-2FDA conversions compared to the NDTWT, respectively. Subsequently, both NDTWT and NDTL59Q enzymes were over-expressed and purified using a His-tag system in E. coli. Characterization and enzyme kinetics revealed that the NDTL59Q mutant enzyme containing a single point mutation of leucine to glutamine at the 59th position exhibited superior thermal stability with enhanced substrate specificity to 2FDU.

Production of Fructose Corn Syrup by Glucose Isomerase (Glucose isomerase 효소를 이용한 이성화당(과당) 생산에 관한 연구)

  • 백성원;유두영
    • Korean Journal of Microbiology
    • /
    • v.18 no.2
    • /
    • pp.59-66
    • /
    • 1980
  • Two strains S-P and S-P-2, both Streptomyces sp., have been isolated and were found to have relatively high specific enzyme activity compared to other organisms reported. The specific activity of the enzyme produced from these two strains were 0.25 and 0.2 international units respectively. The productivity of the enzyme achieved was about 50 IU/l/hr. Glucose isomerase form these strains was found to be stable under the temperature of heat treatment (at $65^{\circ}C$) for fixation of enzyme inside the dell. This organism has an advantage in that it did not require toxic metalic ion for enzyme activity and could utilize xylan in leu of xylose as an inducer. The optimal temperature and pH of enzymatic reaction purpose of using these data for the optimal operation and designing of enzyme reactor system. The reaction mechanism was found to follow the single substrate reversible reaction kinetics. The kinetic constants determined experimentally are : $K_{mf}=0.33M,\;K_{mb}=1.0M,\;V_{mf}=0.88{\mu}mole\;per\;min.,\;V_{mb}= 2.96{\mu}mole\;per\;min.\;and\;K_{eq}=0.74.

  • PDF

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Properties and Kinetics of Glutamate Dehydrogenase of Corynebacterium glutamicum (Corynebacterium glutamicum의 Glutamate Dehydrogenase의 효소학적 성질과 Kinetics)

  • Park, Mee-Sun;Park, Soon-Young;Kim, Sung-Jin;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.552-555
    • /
    • 1989
  • A 150-fold purified preparation of NADPH-specific glutamate dehydrogenase of Corynebacterium glutamicum (1) was used for the determination of kinetic parameters of the substrates, NADPH, NH$_4$Cl, and $\alpha$-ketoglutarate in the direction of glutamate synthesis. The kinetic constants determined from this study suggest a biosynthetic role for the enzyme, Based on the analysis of the result derived from initial velocity, the reaction mechanism was postulated to be ordered addition with NADPH as a first substrate to bind in the forward direction. Of the several metabolites tested for a possible function in the regulation of glutamate dehydrogenase activity, only malate and citrate were appeared to have an appreciable influence on the enzyme, Potassium chloride showed to be the most effective for the enzyme activity.

  • PDF

Studies on the Immobilized Whole-cell Enzyme of Arthrobacter simplamide Polymer

  • Kim, Doo-Ha;Lee, J.S.;Ryu, D.Y.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1978.10a
    • /
    • pp.207.2-207
    • /
    • 1978
  • Arthrobacter simplex (ATCC 6946) was cultured, induced and immobilized in acrylamide polymer. The characteristics of the immobilized whole-cell enayme were studied using hydrocortisone as the substrate. The enzyme activity was increased during the incubation of the gel particle in 0.5% peptone media. The ennzyme reaction kinetics of the Δ'-dehydrogenase (3-oxosteroid Δ'-oxydo reductase, E. C. 1.3.99.4) foliowed the Michaelis-Menten type. Km and Vm values were different significantly after immobilization of the cell. The optimum pH and temperature were changed, too. Nitrogen sources such as casitone, peptone or tryptone were good media for the enzyme reaction. And there was no need to add cofactors of the enzyme in the pre-sence of energy sources used in the test. The effect of metal ions on the enzyme activity was insignificant. Organic solvents were used increase the substrate concentration and there was no optimum solvent concentration depending on the substrate concentration.

  • PDF