Acknowledgement
This work was funded by the National Research Foundation of Korea (Project No. NRF-2021R1A2C2012203).
References
- Crooke ST, Baker BF, Crooke RM, Liang, X-H. 2021. Antisense technology: an overview and prospectus. Nat. Rev. Drug. Discov. 20: 427-453. https://doi.org/10.1038/s41573-021-00162-z
- Chan JHP, Lim S, Wong WSF. 2006. Antisense oligonucleotides: from design to therapeutic application. Clin. Exp. Pharmacol. Physiol. 33: 533-540. https://doi.org/10.1111/j.1440-1681.2006.04403.x
- Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, et al. 2020. Antisense oligonucleotides: an emerging area in drug discovery and development. J. Clin. Med. 9: 2004. https://doi.org/10.3390/jcm9062004
- Ochoa S, Milam VT. 2020. Modified nucleic acids: expanding the capabilities of functional oligonucleotides. Molecules 25: 4659. https://doi.org/10.3390/molecules25204659
- McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. 2021. Recent progress in non-native nucleic acid modifications. Chem. Soc. Rev. 50: 5126-5164. https://doi.org/10.1039/D0CS01430C
- Xiong H, Veedu RN, Diermeier SD. 2021. Recent advances in oligonucleotide therapeutics in oncology. Int. J. Mol. Sci. 22: 3295. https://doi.org/10.3390/ijms22073295
- Wilds CJ, Damha MJ. 2000. 2'-Deoxy-2'-fluoro-beta-D-arabinonucleosides and oligonucleotides (2'F-ANA): synthesis and physicochemical studies. Nucleic. Acids Res. 28: 3625-3635. https://doi.org/10.1093/nar/28.18.3625
- Manoharan M. 1999. 2'-Carbohydrate modifications in antisense oligonucleotide therapy: importance of conformation, configuration and conjugation. Biochim. Biophys. Acta. 1489: 117-130. https://doi.org/10.1016/S0167-4781(99)00138-4
- Munch-Petersen. 1983. Metabolism of nucleotides, nucleosides and nucleobases in microorganisms. Academic Press Inc. 203-258.
- Roush AH, Betz RF. 1958. Purification and properties of trans-N-deoxyribosylase. J. Biol. Chem. 233: 261-266. https://doi.org/10.1016/S0021-9258(18)64745-3
- Cardinaud R, Holguin J. 1979. Nucleoside deoxyribosyltransferase-II from Lactobacillus helveticus substrate specificity studied. Pyrimidine bases as acceptors. Biochim. Biophys. Acta 568: 339-347. https://doi.org/10.1016/0005-2744(79)90301-2
- Danzin C, Cardinaud R. 1974. Deoxyribosyl transfer catalysis with trans-N-deoxyribosylase. Eur. J. Biochem. 48: 255-262. https://doi.org/10.1111/j.1432-1033.1974.tb03763.x
- Danzin C, Cardinaud R. 1976. Deoxyribosyl transfer catalysis with trans-N-deoxyribosylase. Eur. J. Biochem. 62: 365-72. https://doi.org/10.1111/j.1432-1033.1976.tb10168.x
- Lysik MA, Wu-Pong S. 2003. Innovations in oligonucleotide drug delivery. J. Pharm. Sci. 92: 1559-1573. https://doi.org/10.1002/jps.10399
- Liu P, Sharon A, Chu CK. 2008. Fluorinated nucleosides: synthesis and biological implication. J. Fluor. Chem. 129: 743-766. https://doi.org/10.1016/j.jfluchem.2008.06.007
- Wilson DS, Keefe AD. 2001. Random mutagenesis by PCR. Curr. Protoc. Mol. Biol. Chapter 8: unit 8.3.
- Cadwell RC, Joyce GF. 1992. Randomization of genes by PCR mutagenesis. PCR Methods Appl. 2: 28-33. https://doi.org/10.1101/gr.2.1.28