• 제목/요약/키워드: enzyme kinetics

검색결과 224건 처리시간 0.031초

생체분자막을 이용한 생물분자소자의 개발 제1부 :효소분자 LB막을 이용한 에탄올 측정용 광학 바이오센서 (Development of Biomolecular Device Using Biomolecular Film Part 1: Optical Biosensor to Detect the Ethanol Using Langmuir-Blodgett Film of Eilzyme Molecules)

  • 최정우;배주연지용이원홍
    • KSBB Journal
    • /
    • 제10권1호
    • /
    • pp.105-112
    • /
    • 1995
  • 본 연구에서는 LB기법에 의하여 분자수준으로 고 정화된 효소를 이용하여 에탄올의 양을 측정하는 광섬유 바이오센서가 개발되 었다. ADH는 arachidic acid의 단분자막에 LB기법으로 고정화된다. 센서의 출력신호를 분석하기 위하여 고정화된 ADH의 효소 반응은 ordered multisubstrate mechanism을 이용 하여 검토되었다. 광학 측정 시스템이 제시되었으며, 센서의 출력신호는 에단올의 농도에 비례하여 증가 하며 LB막에 누적된 누적충수와 관련이 있음을 알 수 있었다. LB막의 누적된 누적충수를 20충으로 증가하면 센서의 신호출력 범위가 확장되어 45mM의 고농도 에탄올도 측정할 수 있었다. 순수지질의 단 분자막과 효소가 흡착된 지질의 단분자막의 $\pi$-Aisotherm은 중성의 subphase에서 각기 다른 전하를 띠는 세 가지 종류의 지질에 대하여 조사되었다. ADH의 흡착도가 가장 우수한 지질은 arachidic a acid이며 이는 중성의 sub phase에서 양의 전하를 띠는 ADH 분자와 읍극의 전하를 띠는 arachidic a acid 분자 사이에 작용하는 정전기력에 기인한 것이다.

  • PDF

$CCl_4$ 에 의한 간손상 모델 실험동물에 있어서 cyclohexane 투여가 혈청 glutathione S-transferase 활성에 미치는 영향 (Effect of Cyclohexane Treatment on Serum Level of Glutathione S-Transferase Activity in Liver Damaged Rats)

  • 오정대;윤종국
    • 한국환경보건학회지
    • /
    • 제29권2호
    • /
    • pp.80-86
    • /
    • 2003
  • To evaluate the effect of cyclohexane(CH) treatment on the serum levels of glutathion S-transferase(GST) activity in liver damaged animals, damaged liver was induced with pretreatment of 50% $CCl_4$ dissolved in olive oil (0.1 m1/100g body weight) intraperitoneally 17 times every other day. To $CCl_4$-treated rats, CH (1.56 g/kg body weight, i.p) was injected once and then the animals were sacrificed at 4 hours after injection of CH. The $CCl_4$-treated animals were identified as severe liver damage on the basis of liver functional findings, 1,e, increased serum levels of alanine aminotransferase(ALT), alkaline phosphate(ALP) and xanthine oxidase(XO) activities. On the other hand, $CCl_4$-treated animals injected with CH once($CCl_4$-pretreated animals) showed more decreased serum levels of ALT and XO, and more increased those of ALP rather than $CCl_4$-treated animals. In case of comparing the GST with ALT activity in liver, both $CCl_4$-treated and pretreated animals showed similar changing pattern of enzyme actvity. Especially $CCl_4$-pretreated animals showed significantly increased serum level of GST actvity compared with the $CCl_4$-treated those, whereas those of ALT showed reversed tendency. In aspects of GST enzyme kinetics, $CCl_4$-pretreated animals showed higher Vmax of liver GST enzyme than $CCl_4$-treated animals. In conclusion, injection of CH to the liver damaged rats led to enhanced liver damage and more increased activity of serum GST which may be chiefly caused by the enzyme induction.

Chitosan 담체에 고정화된 β-galactosidase에 의한 유당 분해 특성 (Characteristics of Lactose Hydrolysis by Immobilized β-Galactosidase on Chitosan Bead)

  • 강병철
    • 생명과학회지
    • /
    • 제21권1호
    • /
    • pp.127-133
    • /
    • 2011
  • ${\beta}$-galactosidase를 공유결합으로 키토산 담체에 고정화하여 고정화 효소의 특성을 조사하였다. 또한 충진층 반응기에서 연속 조업을 실시하여 공정 최적화를 실시하였다. 키토산 담체에 대한 효소 고정화 효율은 최대 75%을 나타내었다. 고정화 효소에 대한 최적의 pH는 7.0이었고 최적의 온도는 $50^{\circ}C$였다. pH와 온도의 실험 범위에서 고정화 효소가 자유 효소에 비해 넓은 분포를 보여 pH와 온도에 덜 민감하게 작용하였다. 충진층 반응기에서 고정화 효소의 운전에 대한 수학적 모델을 세우고 수치적으로 해를 구하였다. 투입되는 유당의 농도와 유량에 대해서 충진층 반응기의 출구에서 유당의 전환율을 측정하였다. 실험 결과를 경쟁적 저해 효소 반응식과 물질전달 저항을 고려한 수학적 모델의 결과와 비교하였다. 모델의 결과는 실험 결과를 5% 이내의 오차로 잘 예측하였다. 그리고 충진층 반응기의 길이에 따른 유당 전환율과 연속운전 시간에 따른 효소의 비활성화를 고려한 전환율을 모델로부터 예측하였다.

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

Saccharification of Foodwastes Using Cellulolytic and Amylolytic Enzymes from Trichoderma harzianum FJ1 and Its Kinetics

  • Kim Kyoung-Cheol;Kim Si-Wouk;Kim Myong-Jun;Kim Seong-Jun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권1호
    • /
    • pp.52-59
    • /
    • 2005
  • The study was targeted to saccharify foodwastes with the cellulolytic and amylolytic enzymes obtained from culture supernatant of Trichoderma harzianum FJ1 and analyze the kinetics of the saccharification in order to enlarge the utilization in industrial application. T. harzianum FJ1 highly produced various cellulolytic (filter paperase 0.9, carboxymethyl cellulase 22.0, ${\beta}$-glucosidase 1.2, Avicelase 0.4, xylanase 30.8, as U/mL-supernatant) and amylolytic (${alpha}$-amylase 5.6, ${\beta}$-amylase 3.1, glucoamylase 2.6, as U/mL-supernatant) enzymes. The $23{\sim}98\;g/L$ of reducing sugars were obtained under various experimental conditions by changing FPase to between $0.2{\sim}0.6\;U/mL$ and foodwastes between $5{\sim}20\%$ (w/v), with fixed conditions at $50^{\circ}C$, pH 5.0, and 100 rpm for 24 h. As the enzymatic hydrolysis of foodwastes were performed in a heterogeneous solid-liquid reaction system, it was significantly influenced by enzyme and substrate concentrations used, where the pH and temperature were fixed at their experimental optima of 5.0 and $50^{\circ}C$, respectively. An empirical model was employed to simplify the kinetics of the saccharification reaction. The reducing sugars concentration (X, g/L) in the saccharification reaction was expressed by a power curve ($X=K{\cdot}t^n$) for the reaction time (t), where the coefficient, K and n. were related to functions of the enzymes concentrations (E) and foodwastes concentrations (S), as follow: $K=10.894{\cdot}Ln(E{\cdot}S^2)-56.768,\;n=0.0608{\cdot}(E/S)^{-0.2130}$. The kinetic developed to analyze the effective saccharification of foodwastes composed of complex organic compounds could adequately explain the cases under various saccharification conditions. The kinetics results would be available for reducing sugars production processes, with the reducing sugars obtained at a lower cost can be used as carbon and energy sources in various fermentation industries.

Escherichia coli 오르니틴 트란스카바밀라제의 유전자 argI의 클로닝 및 발현 (Cloning and Expression of Escherichia coli Ornithine Transcarbamylase Gene, argI)

  • 류기중;유장걸;고영환;김찬식;송성준;오영선;이선주
    • Applied Biological Chemistry
    • /
    • 제38권2호
    • /
    • pp.118-122
    • /
    • 1995
  • Escherichia coli의 오르니틴 트란스카바밀라제는 오르니틴과 카바밀인산으로부터 시트룰린의 합성을 촉진시키는 효소이다. 이 효소의 기능과 구조와의 상관관계, 반응메카니즘 등 생화학적 연구를 하기 위하여 대량의 효소를 추출할 필요가 있다. 본 연구는 오르니틴 트란스카바밀라제의 대량생산 시스템을 확립하기 위하여 E. coli argI 유전자를 E. coli $DH5{\alpha}$ 세포의 염색체 DNA를 추출한 후에 PCR 방법으로 증폭시켜 얻었다. 증폭된 argI 유전자를 단핵생물 단백질 발현벡터인 pKK223-3에 접합시킨 후, 오르니틴 트란스카바밀라제가 존재하지 않은 E. coli TB2 세포에 클로닝 시켰다. 이 세포로부터 생산된 오르니틴 트란스카바밀라제는 암모늄염에 의한 분할, 열변성, 크로마토그래피 등을 사용하여 순수하게 분리하였다. SDS 단백질 전기영동 결과 약 38 kDa 크기의 효소가 순수하게 얻어졌다. 반응속도론적 실험결과 $K_{cat}$$1{\times}10^5m^{-1}$, $K_M$은 오르니틴에 대하여는 0.35 mM, 카바밀인산에 관하여는 0.06 mM이 각각 얻어졌다. 이 결과는 야생형 오르니틴 트란스카바밀라제의 반응속도 인자들과 비슷한 값이다. 본 연구는 이들 결과로부터 오르니틴 트란스카바밀라제의 기능을 하는 E. coli argI 유전자가 클로닝 되었음을 확인하였다.

  • PDF

Modeling the Catalytic Activity and Kinetics of Lipase(Glycerol-Ester Hydrolase)

  • Demirer, Goksel N.;Duran, Metin;Tanner, Robert D.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제1권1호
    • /
    • pp.46-50
    • /
    • 1996
  • In order to design industrial scale reactors and proceises for multi-phase biocatalytic reactions, it is essential to understand the mechanisms by which such systems operate. To il-lustrate how such mechanisms can be modeled, the hydrolysis of the primary ester groups of triglycerides to produce fatty acids and monoglycerides by lipased (glycerol-ester hydrolase) catalysis has been selected as an example of multiphase biocatalysis. Lipase is specific in its behavior such that it can act only on the hydrolyzed (or emulsified) part of the substrate. This follows because the active center of the enzyme is catalytically active only when the substrate contacts it in its hydrolyzed form. In other words, lipase acts only when it can shuttleback and forth between the emulsion phase and the water phase, presumably within an interphase or boundary layer between these two phases. In industrial applications lipase is employed as a fat splitting enzyme to remove fat stains from fabrics, in making cheese, to flavor milk products, and to degrade fats in waste products. Effective use of lipase in these processes requires a fundamental understanding of its kinetic behavior and interactions with substrates under various environmental conditions. Therefore, this study focuses on modeling and simulating the enzymatic activity of the lipase as a step towards the basic understanding of multi-phase biocatalysis processes.

  • PDF

입체화학을 이용한 생분해성 고분자의 분해속도에 관한 연구 (Study on Degradation Rates of Biodegradable Polymers by Stereochemistry)

  • 박찬영;최용해;이원기
    • 한국환경과학회지
    • /
    • 제18권7호
    • /
    • pp.797-802
    • /
    • 2009
  • To control degradation rate of biodegradable poly(lactide)s (PLA), the stereochemical PLAs with different ratios of d-lactide and l-lactide units were synthesized by the ring open polymerization and the their degradation kinetics were measured by a Langmuir film balance. The alkaline (pH=11) degradation of poly(l-lactide) (l-PLA) monolayer showed the faster rate at a surface pressure of 4 mN/m in the ranges from to 0 to 7 mN/m. However, the enzymatic degradation of l-PLA with Proteinase K did not occur until 4 mN/m. Above a constant surface pressure of 4 mN/m, the degradation rate was increased with a constant surface pressure. These behaviors might be attributed to the difference in the contacted area with degradation medium: alkaline ions need small contact area with l-PLA while enzymes require much bigger one to be activated due to different medium sizes. The stereochmical PLA monolayers showed that the alkaline degradation was increased with their optical impurities while the enzymatic one was inversed. These results could be explained by the decrease of crystallinity with the optical impurity and the inactivity of enzyme to d-LA unit.

토끼의 각막 추출액 중 메치오닌엔케팔린 및 [D-알라$^2$-메치오닌엔케팔린아미드의 분해 및 안정화 (Degradation and Stabilization of Methionine Enkephalin and $[D-Ala^2]-methionine$ Enkephalinamide in the Corneal Extracts of Rabbits)

  • 이치호;이경진;전인구;성영기;신영희
    • Journal of Pharmaceutical Investigation
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 1994
  • In order to study systemic peptide delivery through the ocular route, the stabilities of methionine enkephalin (Met-Enk) and $[D-ala^2]-methionine$ enkephalinamide (YAGFM) in the corneal extracts of rabbits were investigated using reversed phase HPLC. Met-Enk was found to be hydrolyzed most rapidly in the corneal epithelium, but YAGFM was relatively stable. Aminopeptidases appeared to contribute over 60% to the degradation of Met-Enk and the degradation rate of Met-Enk followed the first order kinetics. The half-lives of Met-Enk in the extracts of the corneal epithelium and endothelium were 36 and 673 min, respectively. From the effects of enzyme inhibitors, it was found that the application of the mixture of amastatin, thimerosal and EDTA was very useful for the inhibition of peptide degradation.

  • PDF

Comparison of Cyanide Degrading Enzymes Expressed from Genes of Fungal Origin

  • Cho, Dae-Chul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1221-1226
    • /
    • 2008
  • A variety of fungal species are known to degrade cyanide through the action of cyanide hydratase, a specialized nitrilases which hydrolyze cyanide to formamide. This work is a report on two unknown and un-characterized members from Neurospora crassa and Aspergillus nidulans. Recombinant forms of three cyanide hydratases (CHT) originated from N. crassa, Gibberella zeae, and A. nidulans were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in E. coli and purified using immobilized metal affinity chromatography. These enzymes were compared according to their pH activity profiles, and kinetic parameters. Although all three were similar, the N. crassa CHT has the widest pH range of activity above 50% and highest turnover rate ($6.6{\times}10^8min^{-1}$) among them. The CHT of A. nidulans has the highest Km value of the three nitrilases evaluated in here. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. These data can be used to determine optimal procedures for the enzyme uses in the remediation of cyanide-containing wastes.