DOI QR코드

DOI QR Code

Comparison of Cyanide Degrading Enzymes Expressed from Genes of Fungal Origin

  • Cho, Dae-Chul (Department of Energy & Environmental Engineering Soonchunhyang University) ;
  • Kwon, Sung-Hyun (Department of Marine Environmental Engineering/Institute of Marine Industry, Gyeongsang National University)
  • Published : 2008.11.30

Abstract

A variety of fungal species are known to degrade cyanide through the action of cyanide hydratase, a specialized nitrilases which hydrolyze cyanide to formamide. This work is a report on two unknown and un-characterized members from Neurospora crassa and Aspergillus nidulans. Recombinant forms of three cyanide hydratases (CHT) originated from N. crassa, Gibberella zeae, and A. nidulans were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in E. coli and purified using immobilized metal affinity chromatography. These enzymes were compared according to their pH activity profiles, and kinetic parameters. Although all three were similar, the N. crassa CHT has the widest pH range of activity above 50% and highest turnover rate ($6.6{\times}10^8min^{-1}$) among them. The CHT of A. nidulans has the highest Km value of the three nitrilases evaluated in here. Expression of CHT in both N. crassa and A. nidulans were induced by the presence of KCN, regardless of any presence of nitrogen sources. These data can be used to determine optimal procedures for the enzyme uses in the remediation of cyanide-containing wastes.

Keywords

References

  1. Baxter J., Cummings S. P., 2006, The current and future applications of microorganism in the bioremediation of cyanide contamination, Ant. Van Leeuwen., 90, 1-17 https://doi.org/10.1007/s10482-006-9057-y
  2. Akcil A., Mudder T., 2003, Microbial destruction of cyanide wastes in gold mining: process review, Biotechnol. Lett., 25, 445-450 https://doi.org/10.1023/A:1022608213814
  3. Hardy R. W., Knight E., 1967, ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum, Biochim. Biophys. Acta, 139, 69-90 https://doi.org/10.1016/0005-2744(67)90114-3
  4. Westley J., 1987, Thiosulfate:cyanide sulfurtransferase( rhodanese), Met. Enzymol., 77, 285-291
  5. Kobayashi M., Goda M., Shimizu S., 1998, Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis, Biochim Biophys. Res. Comm., 253, 662-666 https://doi.org/10.1006/bbrc.1998.9834
  6. Brenner C., 2002, Catalysis in the nitrilase superfamily, Curr. Opn. Struct. Biol., 12, 775-782 https://doi.org/10.1016/S0959-440X(02)00387-1
  7. Pace H. C., Brenner C., 2001, The nitrilase superfamily: classification, structure ad function, Gen. Biol., 2, REVIEWS0001
  8. Banerjee A., Sharma R., Banerjee U. C., 2002, The nitrile-degrading enzymes-current status and future prospects, Appl. Microbiol. Biotechnol., 60, 33-44 https://doi.org/10.1007/s00253-002-1062-0
  9. Mathew C. D., Nagasawa T., Kobayashi M., Yamada H., 1988, Nitrilase catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1, Appl. Environ. Microbiol., 54, 1030-1032
  10. Kobayashi M., Shimizu S., 1994, Versatile nitrilase: Nitrile-hydrolyzing enzymes, FEMS Microbiol. Lett., 120, 217-224 https://doi.org/10.1111/j.1574-6968.1994.tb07036.x
  11. Cluness M. J., Turner P. D., Clements E., Brown D. T., O'Reilly C., 1993, Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene," J. Gen. Microbiol., 139, 1807-1815 https://doi.org/10.1099/00221287-139-8-1807
  12. Nolan L. M., Harnedy P. A., Turner P., Hearne A. B., O'Reilly C., 2003, The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity, FEMS Microbiol. Lett., 221, 161-165 https://doi.org/10.1016/S0378-1097(03)00170-8
  13. Sexton A. C., Howlett B. J., 2000, Characterisation of a cyanide hydratase gene in the phytopathogenic fungus Leptosphaeria maculans, Mol. Gen. Genet., 263, 463-470 https://doi.org/10.1007/s004380051190
  14. Watanabe A., Yano K., Ikebukuro K., Karube I., 1998, Cloning and expression of a gene encoding cyanidase from Pseudomonas stutzeri AK61, Appl. Microbiol. Biotechnol., 50, 93-97 https://doi.org/10.1007/s002530051261
  15. Jandhyala D. M., Willson R. C., Sewell B. T., Benedik M. J., 2005, Comparison of cyanide degrading nitrilases, Appl. Microbiol. Biotechnol., 68, 327-335 https://doi.org/10.1007/s00253-005-1903-8
  16. Studier F. W., 2005, Protein production by auto-induction in high density shaking cultures, Prot. Expr. Purif., 41, 207-214 https://doi.org/10.1016/j.pep.2005.01.016
  17. Vogel H. J., 1956, A convenient growth medium for Neurospora (medium N), Microbiol. Genet. Bull., 13, 42-43
  18. Kaminsky S. G. W., 2001, Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans, Fung. Genet. Newslett., 25-31
  19. Fisher F. B., Brown J. S., 1952, Colorimetric determination of cyanide in stack gas and waste water, Anal. Chem., 24, 1440-1444 https://doi.org/10.1021/ac60069a014
  20. Barclay M., Tett V. A., Knowles C. J., 1998, Metabolism and enzymology of cyanide/metallocyanide biodegradation by Fusarium solani under neutral and acidic conditions, Enz. Microb. Technol., 23, 321-330 https://doi.org/10.1016/S0141-0229(98)00055-6

Cited by

  1. Biodegradation of Hazardous Contaminants vol.26, pp.2, 2016, https://doi.org/10.1002/rem.21458