• Title/Summary/Keyword: enzyme adsorption

Search Result 96, Processing Time 0.018 seconds

Effects of Dilute Acid Pretreatment on Enzyme Adsorption and Surface Morphology of Liriodendron tulipifera

  • Min, Byeong-Cheol;Koo, Bon-Wook;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Choi, Joon-Weon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.187-195
    • /
    • 2011
  • In this study, dilute acid pretreatment of $Liriodendron$ $tulipifera$ was performed for enzymatic hydrolysis. As the pretreatment temperature was increased, enzymatic hydrolysis and enzyme adsorption yield also increased. The highest enzymatic hydrolysis yield was 57% (g/g) and enzyme adsorption was 44% (g/g). Enzymatic hydrolysis yield was determined with weight loss of pretreated biomass by enzyme, and enzyme adsorption was a percentage of enzyme weight attaching on pretreated biomass compared with input enzyme weight. When $L.$ $tulipifera$ was pretreated with 1% sulfuric acid at $160^{\circ}C$ for 5 min., hemicellulose was significantly removed in pretreatment, but the lignin contents were constant. Other changes in surface morphology were detected on biomass pretreated at $160^{\circ}C$ by a field emission scanning electron microscope (FESEM). A large number of spherical shapes known as lignin droplets were observed over the entire biomass surface after pretreatment. Hemicellulose removal and morphological changes improved enzyme accessibility to cellulose by increasing cellulose exposure to enzyme. It is thus evidence that enzyme adsorption is a significant factor to understand pretreatment effectiveness.

Adsorption Characteristics of Endo Ⅱ and Exo Ⅱ Purified from Trichoderma viride on Microcrystalline Celluloses with Different Surface Area

  • 김동원;정영규;장영훈;이재국
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.498-503
    • /
    • 1995
  • The adsorption behaviors of two major components purified, endo Ⅱ and exo Ⅱ, from Trichoderma viride were investigated using microcrystalline cellulose with different specific surface area as substrates. Adsorption was found to apparently obey the Langmuir isotherm and the thermodynamic parameters, ΔH, ΔS, and ΔG, were calculated from adsorption equilibrium constant,K. The adsorption process was found to be endothermic and an adsorption entropy-controlled reaction. The amount of adsorption of cellulase components increased with specific surface area and decreased with temperature and varied with a change in composition of the cellulase components. The maximum synergistic degradation occurred at the specific weight ratio of the cellulase components at which the maximum affinity of cellulase components obtains. The adsorption entropy and enthalpy for respective enzyme system increased with specific surface area increase. The adsorption entropy was shown to have a larger value with enzyme mixture.

Recycling of Wastepaper(Ⅶ)-The Effect of Stock Composition on Enzyme Activity- (고지재생연구(제 7보)-지료조성이 효소활성에 미치는 영향-)

  • 여성국;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • Effect of furnish on enzyme activity was investigated by using the three components (cellulose, enzyme, and cationic polyelectrolyte) model papermaking system. Avicel was used as a cellulose model compound to observe the effect of adsorption and desorption of enzyme with other component and the resultant change of particle size. As an experimental result, the enzyme loses considerably its apparent activity due to the adsorption onto cellulose and cationic polyelectrolyte. Activities of enzyme applied to the actual papermaking stocks having controlled fiber length showed different behavior in terms of pulp species UKP and KOCC stocks. That is, the enzyme activity in UKP was increased as fines content increased, however, vice versa in KOCC stock . This result can be considered to be the existence of various contaminants included in the fines of KOCC . The effect of possible contaminants such as inorganic materials, calcium ion, surfactant, and conductivity on enzyme activity were also investigated.

  • PDF

Kinetics on the Specificity of Enzymatic Hydrolysis of Chitin (Chitin의 효소적 가수분해 특성에 대한 속도론적 연구)

  • Lee, Eun-Young;Kim, Kwang
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.44-51
    • /
    • 1998
  • Hydrolysis and adsorption reversibility experiments were run for initial enzyme activity of 4.48, 9.65, 11.19 and 17.14U/mL at a temperature 30$^\circ C$. The chitin particle size corresponded to a mean particle diameter of 0.127mm, and the initial concentration of chitin was 10mg/mL. After approximately 2hrs, the enzyme activity remained constant in a speudo-steady state. The amounts in the bulk [E] and the amounts of enzyme adsorbed on the chitin surface [E] are plotted on Lineweaver-Burk plot to yield a linear relationship with a correlation coefficient of 0.99, a slope of 2.79cm$^-1$ and an intercept of 0.08$\textrm{cm}^2$/U. From this parameters, the values of [E$_T$] and $K_E$ were calculated to be 12.5U/cm$^2$ and 34.88U/mL. respectively, Adsorption isotherm of the enzyme on the particles showed a well developed plateau of 1.35$\times$10$^-3$, 4.72$\times$10$^-3$, 4.42$\times$10$^-3$, 8.58$\times$10$^-3$U/cm$^2$ at 30$^\circ C$. To determine the specificity of chitinase for crystalline chitin, the free energy of adsorption was measured, and its was determined as about -14.62~-18.8kJ/mol.

  • PDF

Immobilization of Thermomyces lanuginosus Xylanase on Aluminum Hydroxide Particles Through Adsorption: Characterization of Immobilized Enzyme

  • Jiang, Ying;Wu, Yue;Li, Huixin
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2016-2023
    • /
    • 2015
  • Xylanase plays important roles in a broad range of industrial production as a biocatalyst, and its applications commonly require immobilization on supports to enhance its stability. Aluminum hydroxide, a carrier material with high surface area, has the advantages of simple and low-cost preparation and resistance to biodegradation, and can be potentially used as a proper support for xylanase immobilization. In this work, xylanase from Thermomyces lanuginosus was immobilized on two types of aluminum hydroxide particles (gibbsite and amorphous Al(OH)3) through adsorption, and the properties of the adsorbed enzymes were studied. Both particles had considerable adsorptive capacity and affinity for xylanase. Xylanase retained 75% and 64% of the original catalytic activities after adsorption to gibbsite and amorphous Al(OH)3. Both the adsorptions improved pH and thermal stability, lowered activation energy, and extended lifespan of the immobilized enzyme, as compared with the free enzyme. Xylanase adsorbed on gibbsite and amorphous Al(OH)3 retained 71% and 64% of its initial activity, respectively, after being recycled five times. These results indicated that aluminum hydroxides served as good supports for xylanase immobilization. Therefore, the adsorption of xylanase on aluminum hydroxide particles has promising potential for practical production.

Kinetic Studies on Enzymatic Hydrolysis of Cellulose(I) -Effect of Structural Features of Cellulose on Enzyme Adsorption- (섬유소 가수분해반응에 관한 연구(I) -효소흡착에 대한 섬유소의 구조적 특성-)

  • Lee, Yong-Hun;Kim, Chul
    • KSBB Journal
    • /
    • v.6 no.2
    • /
    • pp.157-166
    • /
    • 1991
  • The structural properties of cellulose are significantly changed with the progress of hydrolysis reaction. The effects of changes on such properties of cellulosic substrate as crystallinity, amicessibility of enzyme to the active site of cellulose surface, and particle size on the kinetics of enzymatic hydrolysis have been studied. Among those physical studies, the apparent surface active site of cellulose particle was found to have the most significant effect on the hydrolysis kinetics. Based on the experimental results, the adsorption affinity of enzyme and hydrolysis rate were mainly influenced by the surface roughness of cellulose particle. The extent of accesssible active site may be expressed as the change of particle diameter. The Langmuir isotherm was proposed in terms of enzyme activity to explain the actual action of enzyme protein.

  • PDF

Adsorption Behaviors of Cellulose on Cellulose with Different Crystallinities in Nonionic Surfactant Solution (다른 결정성을 갖는 Cellulose에 대한 Cellulase의 비이온성 계면활성제 용액에서의 흡착거동)

  • 김동원;정영규장영훈이재국
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.218-224
    • /
    • 1996
  • The adsorption of cellulase on celluloses with different crystallinities was carried out In nonionic surfactant(Tween 20) solution. Highly crystallized celluloses were prepared by enzymatic prehydrolyzation. From the experiments, the Langmuir isotherm parameters, maximum adsorption amount (Amax) and adsorption equilibrium constant(Kad) for the adsorption, were obtained in the presence and absence of nonionic surfactant. It was found that the Kad values were decreased by adding Tween 20. This indicates that the adsorption affinity is reduced by nonionic surfactant, and Amax decreased with increasing crystallinity under conditions accompanying in both the presence and absence of surfactant. The thermodynamic parameters such as $\Delta$Ha, $\Delta$Ga, and $\Delta$Sa for the adsorption were calculated by using the experimental data. From these results, it was found that the adsorption processes are exothermic reactions in both the presence and absence of surfactant. The heats of adsorption in surfactant solution(-4.68∼-3.62KJmol-1) are smaller than that of the adsorption in the absence of surfactant(-15.60∼-12.10KJmol-1). These results indicated that the tightness of adsorption was reduced by the addition of surfactant. The $\Delta$Sa values were estimated to be positive. This may suggest that the water and solute are released from cellulose on adsorption. The $\Delta$Sa values in surfactant solution are larger than that of the adsorption in the absence of surfactant. This may suggest that the binding of surfactant on hydrophobic region of cellulase cause dispersion of water and solute molecule orienting around the enzyme molecule. The surfactant played an important role in the desorption of enzyme from cellulose functional groups, and enhance the saccharification of the cellulose.

  • PDF

Effect of a Nonionic Surfactant on the Adsorption and Kinetic Mechanism for the Hydrolysis of Microcrystalline Cellulose by Endoglucanase Ⅰ and Exoglucanase II

  • 김동원;장영훈;정영규;손기향
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.300-305
    • /
    • 1997
  • Effect of a nonionic surfactant, Tween 20 on the adsorption and kinetic mechanism for the hydrolysis of a microcrystalline cellulose, Avicel PH 101, by endoglucanase Ⅰ (Endo Ⅰ) and exoglucanase Ⅱ (Exo Ⅱ) isolated from Trichoderma viride were studied. The Langmuir isotherm parameters, amount of maximum adsorption (Amax) and adsorption equilibrium constant (Kad) for the adsorption, were obtained in the presence and the absence of nonionic surfactant. On the addition of Tween 20, the Kad and Amax values of Exo Ⅱ were decreased, while those of Endo Ⅰ were not affected. These indicate that the adsorption affinity of Exo Ⅱ on the cellulose is weakened by nonionic surfactant, and the surfactant enhanced desorption of Exo Ⅱ from insoluble substrate. The enzymatic hydrolysis of the cellulose can be described by two parallel pseudo-first order reactions using the percentages of easily (Ca) and hardly (Cb) hydrolyzable cellulose in Avicel PH 101 and associated rate constants (ka and kb). The Ca value was increased by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture) implying that the low-ordered crystalline fraction in the cellulose may be partly dispersed by surfactant. The ka value was not affect by adding Tween 20 for all enzyme samples (Exo Ⅱ, Endo Ⅰ and their 1:1 mixture). The kb value of Exo Ⅱ was increased by adding Tween 20, while that of Endo Ⅰ was not affected. This suggests that the surfactant helps the Exo Ⅱ desorb from microcrystalline cellulose, and increase the hydrolysis rate. These results were show that the increase of hydrolysis of cellulose by the nonionic surfactant is due to both the activation of Exo Ⅱ and partial defibrillation of the cellulose.

Adsorption Characteristic of Endo I and Exo II Purified from Cellulase by Trichoderma viride on Celluloses with Different Crystallinity (결정성이 다른 셀룰로오스에 대한 Trichoderma viride속 Cellulase로부터 분리한 Endo I 및 II의 흡착특성)

  • 김동원;홍영관;장영훈;이재국
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.162-167
    • /
    • 1998
  • The adsorption behaviors of two major cellulase components, endo I and exo II, from Trichoderma viride were investigated using $\alpha$-celluloses with different correlation crystallinity index(Cc) as substrates. The adsorption of cellulase enzyme components was significantly affected by the reaction condition and the physicochemical properties of the cellulose. The $\alpha$-cellulose was hydrolyzed in the presence of cellulase for various periods. The correlation crystallinity index of $\alpha$-cellulose increased with increasing the hydrolysis time. The adsorption was apparently found to obey the first-order kinetics, and the adsorption activation energy(Ea) was calculated from the adsorption rate constant(ka). The value of adsorption rate constant for endo I was larger than that of exo II. This means that endo I are adsorbed more rapidly than exo II. With the increase in correlation crystallinity index, the values of the adsorption rate constants for endo I and exo II decreased, respectively. The activation energy for the adsorption of exo II on the cellulose also was larger than that of endo I. Also adsorption activation energy of endo I and exo II increased with an increase in the crystallinity of sample cellulose.

  • PDF

Studies on Production of $\beta$-Galactosidase by Lactobacillus sporogenes - Purification of Extracellular $\beta$-Galactosidase - (Lactobacillus sporogenes에 의한 $\beta$-Galactosidase 생산에 관한 연구 -균체외 $\beta$-Galactosidase의 정제 -)

  • 김영만;이정치;최용진;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.185-189
    • /
    • 1985
  • Extracellular $\beta$-galactosidase from the culture broth of L. sporogenes was purified to apparent homogeniety by procedures including ammonium sulfate fractionation, Sephadex G-200 gel filtration, DEAE-Sephadex A-50 ion exchange chromatography, and Hydroxyapatite adsorption chromatography. The purifying procedures resulted in 347-fold purification with the overall yield of 39.5% The purified enzyme had a specific activity(using ONPG as a substrate) of about 1, 585 units per mg protein. The molecular weight of the enzyme protein was estimated to be 140, 000 by gel filtration on Sephadex G-200, and SDS-polyacrylamide gel electorphoresis showed that the enzyme consisted of two identical subunits with a molecular weight of 72, 000.

  • PDF