• Title/Summary/Keyword: enzymatic production

Search Result 668, Processing Time 0.022 seconds

Studies on the Enzyme of Rhizopus oryzae - Part I. Production of Acid Protease and Enzymatic Characteristics - (Rhizopus oryzae의 효소(酵素)에 관(關)한 연구(硏究) - 제(第)1보(報), 산성(酸性) Protease 생산(生産) 및 효소(酵素)의 특성(特性) -)

  • Hou, Won-Nyong;Chung, Man-Jae
    • Applied Biological Chemistry
    • /
    • v.22 no.3
    • /
    • pp.135-141
    • /
    • 1979
  • These experiments were conducted to investigate the conditions of the acid protease production by Rhizopus oryzae and the characteristics of crude enzyme. The results obtained were as follows: 1. The optimum culture time and the optimum amount of added water to the wheat bran medium were about 48 hrs and $80{\sim}120%$, respectively. 2. The addition of $(NH_4)_6Mo_7O_{24},\;(NH_4)_2SO_4,\;NH_4NO_3$, casein, and albumin, respectively, as nitrogen sources to the wheat bran medium was effective. Of these, the optimum concentrations of addition of $(NH_4)_6Mo_7O_{24}$ and casein which were the most effective were 0.1% and 1.0%, respectively. 3. The addition of glucose, galactose, maltose, lactose, and soluble starch, respectively, as carbon sources to the wheat bran medium was effective. Of these, the optimum concentration of addition of glucose which was the most effective was 3.0%. 4. The addition of $KH_2PO_4$ as a phosphate salt to the wheat bran medium was effective. The optimum concentration of addition of $KH_2PO_4$ was 0.3%. 5. The optimum pH for the enzyme action was 2.4, the optimum temperature about $40^{\circ}C$, and the stable pH range $2.0{\sim}5.0$. The enzyme was stab1e below $40^{\circ}C$. 6. The enzyme activity increased rapidly for 10 minutes after addition, thereafter it increased slowly. 7. The enzyme activity increased rapidly to 2 ml of addition, but nearly did not increase at the amounts greater than 2ml.

  • PDF

On-site Output Survey and Feed Value Evaluation on Agro- industrial By-products (농산업부산물들에 대한 배출 현장 조사 및 사료적 가치 평가)

  • Kwak, W. S.;Yoon, J. S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.251-264
    • /
    • 2003
  • This study was conducted to make on-site survey on the output pattern and utilization situation of 19 by-products selected, to evaluate their nutritional characteristics, to find out a reliable index with which digestion of by-products can be predicted on the basis of chemical compositions analyzed and to diagnose the risk of using book values in the absence of the actual values analyzed for diet formulation. Production and utilization situations of by-products were quite various. Nutritionally, fruit processing by-products such as apple pomace (AP), pear pomace (PP), grape pomace (GP), and persimmon peel (PSP), and bakery by-products (BB) were classified as energy feeds. Soybean curd meal (SCM), animal by- products such as blood (BD), feather meal (FM) and poultry by-products (PB), and activated milk processing sludge (AMS) were classified as protein feeds. Soy hulls (SH), spent mushroom compost (SMC), barley malt hulls (BMH), waste paper (WP) and broiler litter (BL) were classified as roughage. Rumen contents (RC) and restaurant food waste (FW) were nutritionally analogous to complete diets for cattle and swine, respectively. Compared to soybean meal (SBM), BD and FM contained high (P<0.05) levels of amino acids and barley malt sprouts (BMS), AMS and FW contained low (P<0.05) levels of amino acids. Enzymatic (pepsin) digestibilities of proteinaceous feeds ranged between 99 and 66%. In vitro DM digestibility was high (P<0.05) in the order of FW, BB, AP, SH, PP, PSP, BMH, BMS, SCM, GP, RC, PB, BL, WP, SMC, AMS, FM and BD. In vitro DM digestibility had the highest correlation (r=0.68) with nonfibrous carbohydrate among chemical components. Differences between analyzed values of chemical components and book values were considerable. Caution is required in using book values when large amount of by-products are used in diets.

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF

Screening of Extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity (제주 자생 해양 녹조류와 갈조류 추출물로부터의 항고혈압 활성)

  • Cha, Seon-Heui;Ahn, Gin-Nae;Heo, Soo-Jin;Kim, Kil-Nam;Lee, Ki-Wan;Song, Choon-Bok;K.Cho, So-Mi;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.307-314
    • /
    • 2006
  • This study was conducted to screen in vitro angiotensin converting enzyme (ACE) inhibitory activities of methanol (MeOH) and aqueous extracts which were prepared by four different extractions-80% methanol extracts(ME) at $20^{\circ}C\;and\;70^{\circ}C$, respectively and aqueous extracts (AE) at both temperatures with the residue of the MEs-of ten marine green algae and nineteen brown algae collected along Jeju coast of Korea. Most marine brown algae extracts showed higher capacities than those of marine green algae in ACE inhibitory activity. Particularly, $70^{\circ}C$ MeOH extract (70ME) of Hizikia fusiforme showed the strongest inhibition activity (about 87%) among all the extracts. Also, 70 MEs of Enteromorpha linza, Ishige sinicola, Laminaria ochotensis, Petrospongium rugosum, Sagrassum horneri, Undaria pinnatifida and $20^{\circ}C$ MeOH extracts (20ME) of Myagropsis myagroides, Petrospongium rugosum, $20^{\circ}C$ aqueous extracts (20AE) of Codium contractum, Enteromorpha compressa, and $70^{\circ}C$ aqueous extracts (70AE) of Ecklonia cava, Petrospongium rugosum showed moderate ACE inhibitory activities more than 50% and the other extracts exhibited weak activities. On tile other hand, E. cava had the best ACE inhibitory activity among 70AEs. This indicates that 70AE of E. cava contains potential anti-ACE macromolecular. We tried to proteolytic digest 70AE of E. cava to induce production of anti-ACE peptides from E. cava 70AE. The enzymes used are five pretenses including Kojizyme, Flavourzyme, Neutrase, Alcalase, and Protamex, which are food grade-commercial enzymes from Novo Co. Flavourzyme-digest of E. cava 70AE showed the highest inhibitory activity about 90%. And the five different enzymatic digests of the E. cava 70AE ranged from 2.33 to 3.56 ${\mu}g/mL$, respectively in $IC_{50}$ values of anti-ACE activity.

Cloning and Characterization of Phosphoinositide 3-Kinase γ cDNA from Flounder (Paralichthys olivaceus) (넙치에서 분리된 phosphoinositide 3-kinase γ 유전자의 클로닝 및 특성 연구)

  • Jeong, Tae Hyug;Youn, Joo Yeon;Ji, Keunho;Seo, Yong Bae;Kim, Young Tae
    • Journal of Life Science
    • /
    • v.24 no.4
    • /
    • pp.343-351
    • /
    • 2014
  • Phosphoinositide 3-kinase (PI3K) plays a central role in cell signaling and leads to cell proliferation, survival, motility, exocytosis, and cytoskeletal rearrangements, as well as specialized cell responses, superoxide production, and cardiac myocyte growth. PI3K is divided into three classes; type I PI3K is preferentially expressed in leukocytes and activated by ${\beta}{\gamma}$ subunits of heterotrimeric G-proteins. In this study, the cDNAs encoding the $PI3K{\gamma}$ gene were isolated from a brain cDNA library constructed using the flounder (Paralichthys olivaceus). The sequence of the isolated $PI3K{\gamma}$ was 1341 bp, encoding 447 amino acids. The nucleotide sequence of the $PI3K{\gamma}$ gene was analyzed with that of other species, including Oreochromis niloticus and Danio rerio, and it turned out to be well conserved during evolution. The $PI3K{\gamma}$ gene was subcloned into the expression vector pET-44a(+), and expressed in the E. coli BL21 (DE3) codon plus cell. The resulting protein was expressed as a fusion protein of approximately 49 kDa containing a C-terminal six-histidine extension that was derived from the expression vector. The expressed protein was purified to homogeneity by His-tag affinity chromatography and showed enzymatic activity corresponding to $PI3K{\gamma}$. The binding of wortmannin to $PI3K{\gamma}$, as detected by anti-wortmannin antisera, closely followed the inhibition of the kinase activities. The results obtained from this study will provide a wider base of knowledge on the primary structure and characterization of the $PI3K{\gamma}$ at the molecular level.

Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis) (미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성)

  • Seo, Jung-Soo;Lim, Sang-Uk;Kim, Na-Young;Lee, Sang-Hwan;Oh, Hyun-Suk;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • Phosphoinositide-specific phospholipase $C\delta$ $PLC\delta$) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to obtain the biochemical characteristics of the expressed recombinant $PLC\delta$ in E. coli cloned from Misgurnus mizolepis and partially purified $PLC\delta$ enzymes from liver tissues of M. mizolepis (wild ML-$PLC\delta$). The ML $PLC\delta$ gene was cloned and expressed under the previous report (Kim et al., 2004), and purified the recombinant protein by successive chromatography using $Ni^{2+}$-NTA affinity column and gel iltration FPLC column. The wild ML-$PLC\delta$ protein was solublized with 2 M KCI and purified by successive chromatography on open heparin-Sephagel and analytical TSKgel heparin-5PW. Both the recombinant and wild ML-$PLC\delta$ form of protein showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP$_2$) or phosphatidylinositol (PI). Its activity was absolutely $Ca^{2+}$- dependant, which was similar to mammalian $PLC\delta$ isozymes. Maximal PI-hydrolytic activations of recombinant and wild ML- TEX>$PLC\delta$ was at pH 7.0 and pH 7.5, respectively. In addition, the enzymatic activities of recombinant and wild ML-$PLC\delta$ were increased in concentration-dependent manner by detergent, such as sodium deoxycholate SDC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The activities decreased in contrast by a polyamine, such as spermine. Western blotting showed that several types of $PLC\delta$ isozymes exist in various organs. Taken together our results, it suggested that the biochemical characteristics of ML-$PLC\delta$ are similar with those of mammalian $PLC\delta1$ and ${\delta}3$ isozymes.

Physico-chemical and Microbiological Changes of Traditional Meju during Fermentation in Kangweondo Area (강원도 지방의 재래식 메주 발효중 이화학적 특성 및 미생물의 변화)

  • Yoo, Jin-Young;Kim, Hyeon-Gyu;Kim, Wang-June
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.908-915
    • /
    • 1998
  • By using Korean native soybean, traditional meju was prepared in Chuncheon, Kangweondo according to the traditional process. Analysis of physico-chemical, enzymatic and microbiological changes during meju fermentation were carried out in order to obtain a basic information for industrial scale production of meju. The enviroments for natural meju fermentation were $10{\sim}15^{\circ}C$ and $60{\sim}70%{\;}RH$. Moisture content decreased from 59% to 11% (exterior section) and 19% (interior section). the pH of meju rapidly increased up to 8.5 at $33^{rd}{\;}day$ of fermentation and thereafter decreased down to 7.9 at $70^{th}{\;}day$ of fermentation. Souble protein content was 1.47% at initial stage and increased up to $6.31{\sim}7.34%$ at $33^{rd}{\;}day$ of fermentation. Amino nitrogen content was $460{\sim}770{\;}mg%$ at $70^{th}{\;}day$ of fermentation. the color of meju became gradually black and decreased in redness and yellowness. During the process, protease and lipase seemed to play an important role in the digestion of soy protein and fat. Acidic protease activity increased up to $135.9{\sim}152.4{\;}unit/g$ at $33^{rd}{\;}day$ of fermentation and were $181.3{\sim}272.6{\;}unit/g$ at $70^{th}{\;}day$ of fermentation. Lipase activity increased up to 6 unit/g (interior section) and 15 unit/g (exterior section) at $70^{th}{\;}day$ of fermentation. the viable cell count of meju was at the level of $10^8{\;}CFU/g$ during the overall fermentation period. Aerobic halophilic count was $1.51{\times}10^7{\;}CFU/g$ at initial stage and maintained $10^8{\;}CFU/g$ level during the process. Initial anaerobic cell count was $2.0^9{\times}10^4{\;}CFU/g$ and increased up to $10^5{\;}CFU/g$ level at 47 days. Yeast and mold counts were $10^4{\sim}10^5{\;}CFU/g$ for the fermentation period.

  • PDF

Production of yuzu granules using enzyme treated yuzu pulp powder and evaluation of its physiochemical and functional characterization (유자박 식이섬유를 이용한 유자과립 제조 및 이화학적 특성조사)

  • Seong, Hyeon Jun;Lee, Bo-Bae;Kim, Duck-Hyun;Lee, Seung-Hyun;Ha, Ji-Young;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.382-390
    • /
    • 2021
  • In this study, solubilized yuzu pulp powder (EYP) was produced using enzyme treated yuzu pulp powder (YP) and used to manufacture yuzu granules (0-20% EYP content). The physicochemical, product stability, and functional properties of Yuzu granules were compared among five enzyme treatments. Among the five treatments, CL had the highest YP solubilization yield (48.68%). Microstructural observation of EYP using FE-SEM revealed that its surface became irregular and porous after enzymatic treatment. Compared to YP, EYP had 2 times lower insoluble dietary fibers and 3 times lower hemicellulose and cellulose content. Among the yuzu granules, IV (yuzu granules with 15% EYP) had an excellent water and oil holding capacity and flowability. IV granule had the highest narirutin and hesperidin content of 3.4 mg and 2.2 mg/g DW, respectively and the highest antioxidant (68.4%) and tyrosinase inhibitory activities (82.5%). Therefore, EYP or granule with EYP can be used as a functional component in food industry or pharmaceutical field.