• Title/Summary/Keyword: enzymatic production

Search Result 669, Processing Time 0.027 seconds

L-Lysine Production by 6-Azauracil Resistant Mutant of Corynebacterium glutamicum (6-Azaumcil 내성을 지닌 Corynebacterium glutamicum 변이주에 의한 L-Lysine의 생산)

  • 신현철;김성준전영중이재흥
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.372-377
    • /
    • 1994
  • To improve L-lysine yield, pyrimidine base analogue(6-azauracil)-resistant mutants were isolated from Corynebacterium glutamicum KFCC10672 Among them the best producer, C. glutamicum CH0516, was selected and tested for L-lysine production in a $7\ell$ fermentor. It was found that the product yield obtained with C. glutamicum CH0516 was higher than that of the parent strain by 3%. In order to elucidate the gain in productivity with the 6-azauracil-resistant mutant enzymatic kinetic parameters such as aspartokinase(AKase) and aspartate carbamoyltransferase (ATCase) were measured. The Km values of AKase with C. glutamicum KFCC10672 and CH0516 were 200.0 mM and 166.7 mM and those of ATCase were 0.13 mM and 0.27 mM, respectively. However, the specific enzyme activities of AKase of C. glutamlcum KFCC10672 and CH0516 were $3.89{\times}10^{-1}$ units/mg and $4.78{\times}10^{-1}$ units/mg, and those of ATCarse were 2.20 units/mg and 1.84 units/mg, respectively. It appears that some increase in product yield with C. gluramicum CH0516 is likely due to the increased Akase activity and decreased ATCase activity.

  • PDF

Production of 2-Methoxy-1,4-benzoquinone (2-MBQ) and 2,6-Dimethoxy-1,4-benzoquinone (2,6-DMBQ) from Wheat Germ Using Lactic Acid Bacteria and Yeast (젖산균 및 효모를 이용한 밀배아로부터 2-Methoxy-1,4-benzoquinone (2-MBQ) 및 2,6-Dimethoxy-1,4-benzoquinone(2,6-DMBQ)의 생산)

  • Yoo, Jong-Gil;Kim, Myoung-Dong
    • Food Engineering Progress
    • /
    • v.14 no.4
    • /
    • pp.292-298
    • /
    • 2010
  • Wheat germ contains the glycosylated forms of 2-methoxy-p-benzoquinone (2-MBQ) and 2,6-dimethoxy-p-benzoquinone (2,6-DMBQ), both of which have antimicrobial and immunostimulatory effects. Conversion of glycosylated 2-MBQ and 2,6-DMBQ to their more functional unglycosylated forms requires enzymatic action of $\beta$-glucosidase. We investigated the applications of lactic acid bacteria and yeast that produce $\beta$-glucosidase as starters for production of unglycosylated 2-MBQ and 2,6-DMBQ from wheat germ. Lactobacillus zeae and Pichia pijperi were selected through $\beta$-glucosidase enzyme assays for 37 yeast strains and five strains of lactic acid bacteria. Lb. zeae was more efficient than P. pijperi at producing 2-MBQ and 2,6-DMBQ from wheat germ. After 48 hr of fermentation with a mixed culture of Lb. zeae and P. pijperi, the concentration of 2-MBQ was 0.46${\pm}$0.07 mg/g, indicating an approximately 1.6-fold higher concentration than that obtained by pure culture of Lb. zeae. However, the concentration of 2,6-DMBQ was not significantly enhanced by fermentation with a mixed culture of Lb. zeae and P. pijperi.

Recombinant Production and Antimicrobial Activity of an Antimicrobial Model Peptide (Uu-ilys-CF) Derived from Spoon Worm Lysozyme, Uu-ilys (개불 라이소자임 유래 항균성 모델 펩타이드(Uu-ilys-CF)의 재조합 단백질 생산 및 항균 활성)

  • Oh, Hye Young;Go, Hye-Jin;Park, Nam Gyu
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.83-89
    • /
    • 2021
  • Uu-ilys, an i-type lysozyme from spoon worm (Urechis unicinctus), is an innate immune factor that plays an important role in the defense against pathogens. It also possesses non-enzymatic antibacterial activity. Thus, there is a possibility to develop an antimicrobial model peptide from Uu-ilys. In this study, we report the design, production, and antibacterial activity of an Uu-ilys analog that exhibits antibacterial activity. The Uu-ilys structure was fragmented according to its secondary structures to predict the regions with antimicrobial activity using antimicrobial peptide (AMP) prediction tools from different AMP databases. A peptide containing the C-terminal fragment was predicted to exert antimicrobial activity. The chosen fragment was designated as an Uu-ilys analog containing the C-terminal fragment, Uu-ilys-CF. To examine the possibility of developing an AMP using the sequence of Uu-ilys-CF, recombinant fusion protein (TrxA-Uu-ilys-CF) was produced in an expression system that was heterologous. The produced fusion protein was cleaved after methionine leaving Uu-ilys-CF free from the fusion protein. This was then isolated through high performance liquid chromatography and reverse phase column, CapCell-Pak C18. The antibacterial activity of Uu-ilys-CF against different microbial strains (four gram-positive, six gram-negative, and one fungal strain) were assessed through the ultrasensitive radial diffusion assay (URDA). Among the bacterial strains tested, Salmonella enterica was the most susceptible. While the fungal strain tested was not susceptible to Uu-ilys-CF, broad spectrum antibacterial activity was observed.

Current status and prospects of chitosan for industrial applications (키토산 관련 산업의 현황과 전망)

  • Jung, Byung Ok
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • For the development of the chitosan industry in Korea, the catch of red snow crabs caught on the east coast is rapidly decreasing. Therefore, it is urgent to develop raw materials that can replace the red snow crab as the top priority to solve the supply and demand problems, as well as wastewater treatment costs account for a large proportion of the cost of chitosan. In order to solve the problems, continuous research on biological extraction methods such as enzymatic extraction and microbial fermentation will increase production efficiency and lower unit cost as well as chemical extraction methods. Further efficient manufacturing method can be established. Establishing of novel techniques is indispensable for production of high-purity chitosan and the ability to regulate and separate the molecular weight, as well as joint research with industry, academia and research institute for the research and development of high-functional chitosan derivatives.

Production of PMA-induced MMP-2 and MMP-9 in the HT-1080 Fibrosarcoma Cell Line is Inhibited by Corydalis heterocarpa via the MAPK-related Pathway (PMA로 자극된 HT-1080 세포에서 염주괴불주머니 추출물의 MAPK 경로를 통한 MMP-2, MMP-9 발현 억제 효과)

  • Yu, Ga Hyun;Karadeniz, Fatih;Oh, Jung Hwan;Kong, Chang-Suk
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2022
  • Matrix metalloproteinase (MMP) enzymes are responsible for the degradation and formation of the extracellular matrix (ECM), and overproduction of MMPs is observed in several diseases, such as cancer and asthma, that progress with metastatic characteristics. Natural products, especially phytochemicals, have been an important source of MMP inhibitors with reduced side effects. Although the majority of phytochemicals inhibit the enzymatic activity of MMPs, some suppress MMP production. In this context, the current study evaluated the potential of Corydalis heterocarpa, a halophyte with reported bioactivities, to inhibit MMP expression in PMA-stimulated HT-1080 cells. A crude C. heterocarpa extract was shown to decrease the mRNA and protein expression of MMP-2 and MMP-9 while increasing the endogenous MMP inhibitors TIMP-1 and TIMP-2 which regulate MMP expression in healthy tissues. In addition, our results show that the inhibitory effects of C. heterocarpa might occur through suppression of the phosphorylation of MAPK signaling, the upstream activator of MMP overexpression. In conclusion, C. heterocarpa is a potential source of antimetastatic compounds that might serve as lead molecules to develop novel MMP inhibitors.

Effects of Luteolin-7-𝑂-glucoside on melanin synthesis (Luteolin-7-𝑂-glucoside가 멜라닌 합성에 미치는 영향)

  • Choi, Byeong Min;Hong, Hyehyun;Park, Taejin;Kim, Seung-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.231-237
    • /
    • 2022
  • Biorenovation is a method that converts existing compounds into new compounds through the enzymatic action of microorganisms. Biorenovation has expected effects such as reducing toxicity of compounds and increasing their activity. In this study, we successfully synthesized Luteolin-7-O-glucoside (L7G) through biorenovation and investigated its inhibitory effect on melanin production in α-Melanocyte stimulating hormone induced B16F10 mouse melanoma cells. We confirmed that Luteolin was toxic at 50, 100 and 200 µM, but our L7G in same concentration was not toxic for B16F10 mouse melanoma cells and also showed significant reduction in melanin production and tyrosinase activity. In addition, while investigating the effect of L7G on factors involved in melanin synthesis through western blotting, we were able to confirm that the MITF and tyrosinase protein synthesis was inhibited in treatment with L7G, however, tyrosinase related protein-1 (TRP-1) and dopachrome tautomerase (TRP-2) expression was not affected. So we derived a conclusion that through biorenovation we could produce compounds like L7G with improved activity and reduced toxicity for possible use as an active ingredient with whitening functionality in cosmetics.It also suggests that the application of biorenovation has potential usefulness in developing anti-inflammatory materials. It also suggests that the application of bio-renovation has potential usefulness in the development of inflammatory material. We applied Biorenovation technology to Distylium racemosum extract (DR) to generate Distylium racemosum biorenovation product (DRB), and investigated the anti-inflammatory properties of DRB in lipopolysaccharide (LPS)-treated RAW264.7 macrophages. We are applying technology to Biorenovation Distylium racemosum extract (DR) Distylium racemosum was to create a biorenovation product (DRB), lipopolysaccharide (LPS) investigated the anti-inflammatory properties of DRB in RAW264.7 macrophages treated for.

Manufacturing Process of Glucose from Agricultural Byproducts for Feeding a Biodiesel-producing Algae (농업부산물로부터 바이오 디젤 생산용 미세조류 배양액에 첨가할 당의 생산 공정 연구)

  • Kim, Seung-Ri;Han, In-Seob
    • Journal of Appropriate Technology
    • /
    • v.5 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • Microalgae do not require much land and make a higher efficient oil production. However, it costs still much higher than other biodiesel resources, such as crops. Sugars charge 80% of culture media when microalgae are massively cultured in the fermenter. This study aims to develop a cost-efficient process for sugar production from Chinese cabbage byproducts. Pre-treatment with 0.25% H2SO4 was most effective when chopped cabbage was incubated 50℃/130 rpm for 24 hours. To hydrolyze cabbage cellulose, we used cellulases secreted from Trichoderma. harzianum. T. harzianum was cultured at 28℃/pH 7/130 rpm for five days. Optimal enzymatic activity of cellulase was obtained by incubating at 0.24 FPU/ml/45℃/pH 5/130 rpm for three days. In comparison to other agricultural waste, such as rice straw, green tea leaves, and palm residue, Chinese cabbage produced the highest sugar yield. We found the optimal conditions to produce sugar from Chinese cabbage byproducts as a carbon source to culture biodiesel-producing microalgae. The efficient process developed in this study helps microalgae as a sustainable alternative energy source by cost-down.

Discovery of a Novel Cellobiose Dehydrogenase from Cellulomonas palmilytica EW123 and Its Sugar Acids Production

  • Ake-kavitch Siriatcharanon;Sawannee Sutheeworapong;Sirilak Baramee;Rattiya Waeonukul;Patthra Pason;Akihiko Kosugi;Ayaka Uke;Khanok Ratanakhanokchai;Chakrit Tachaapaikoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.457-466
    • /
    • 2024
  • Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30℃), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 × 105 and 9.06 × 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.

Activities of the Hydrolytic Enzymes Produced by Plant Pathogenic Fungi, Sclerotium rolfsii, Sclerotinia Sclerotinia and Sclerotiorum, and Helminthosporium sigmoideum var. irregulare (수종의 식물병원균(흰비단병균$\cdot$균핵병균 및 좀검은 균핵병균)이 생산하는 가수분해효소의 활성)

  • Cho B. H.;Kim K.
    • Korean journal of applied entomology
    • /
    • v.16 no.4 s.33
    • /
    • pp.199-208
    • /
    • 1977
  • Activities of various hydrolytic enzymes produced by three plant pathogenic fungi, Sclerotium rolfsii Sacc., Sclerotinia sclerotiorum (Lieb.) deBary and Helminthosporium sigmoideum var. irregulare Crallery et Tullius, were measured. Activties and amounts of the enzymes in mycelia, cultural filtrates, and sclerotia(except of sclerotia of H. sigmoideum var. irregulare) were estimated at various pH levels in order to find out optimal pH for their enzymatic activities. Enzymes such as cellulase (ex), invertase, xylanase, $\beta-amylase$, polymethylgalacturonase, polygalacturonase, phosphatase and protease were estimated. Culture solution for production of enzymes was prepared by adding of 10g, D-glucose, 1.3g $NH_4NO_3,\; 0.5g\; MgSO_4,\;7H_2O,\; and\; 1.0g\; KH_2PO_4$ into 1 liter of potato decoction plus 2ml of micro element solution consisting of 0.2mg. Fe, 0.2mg Zn, and 0.1mg Mn as the sulphates into 1 liter of distilled water. All tested mycelia and cultural filtrates were obtained from the cultures incubarted in previous solution for ten days at $25^{\circ}C$, and sclerotia were harvested from PDA plates of 3. days old, The crude enzyme solutions were prepared according to the method of Miyazaki etal. Ten days after incubation, activities of Cx produced by Scl. sclerotiorum were higher than those of the other fung and each of Cx from three fungi showed different pH optima, such as S. rolfsii and Scl. schlerotiorum in acid side (around pH 3.0), H. sigmoideum var. irregulare in neutral side (around pH 6.3). Invertase activities of S. rolfsii were 20 times higher than those of the other fungi in all samples. All tested fungi, however, showed no significant difference between the enzymatic activities of their cultural filtrate and mycelia and the activities in sclerotia of S. rolfsii and Scl. sclerotiorum were hardly recognized. There were multiple peaks on the xylanase activity curves of three fungi in terms of pH values. High activities of the xylanase were revealed in sclerotia of S. rolfsii and Scl. sclerotiorum, and in mycelia of H. sigmoideum var. irregulare. The highest activities of $\beta-amylase$ were shown both in mycelia and cultural filtrate of H. sigmoideum var. irregulae among the tested fungi, and their optimal pH was 6.2 in both mycelia and cultural filtrate. In the S. rofsii and Sel. sclerotiorum, however, the activities of cultural filtrates were higher than those of the other fungi, and optimal pH was 3.0 and 6.2 for cultural filtrate and both mycelia and sclerotia, respectively. Activities of PMG were high in cultural filtrates of all tested fungi, especially in Scl. sclerotiorum and H. sigmoideum var. irregulare. Mycelia of themalso showed the considerable activities. Optimal pH for enzymatic activities were variable with thekind of fungi or with the samples measured. The highest activities of PG were presented by mycelia of S. rolfsii and Scl. sclerotiorum. $9.l\mu /min.\; and\; 9.5\mu g/min.$, respectively. Optimal pH for activity of PG in mycelia was around 4.5 in S. rolfsii and around 3.0 in Scl. sclerotiorum. Phosphatase of S. rolfsii and Scl. sclerotiorum was more active in acid side (optimal PH3. 5) and that of H. sigmoideum var. irregulare showed one peak each in acid, neutral and alkaline side. But the highest peak was at pH 9.5. Protease of all tested fungi was more active at pH 10.0, especially that of the cultural filtrate of H. sigmoideum var. irregualre.

  • PDF

Studies on the Production of Alcohol from Woods (목재(木材)를 이용(利用)한 Alcohol 생산(生産)에 관(關)한 연구(硏究))

  • Cheong, Jin Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.59 no.1
    • /
    • pp.67-91
    • /
    • 1983
  • In order to examine the alcohol production from softwoods (Pinus densiflora Sieb. et Zucc., Pinus rigida Miller, Larix leptolepis Gordon) and hardwoods (Alnus japonica Steud., Castanea crenata Sieb. et Zucc. Populus euramericana CV 214), chemical compositions were analyzed and conditions of acid hydrolysis with wood meals were established. Also strains which could remarkably decompose the cellulose were identified, and conditions of cellulase production of strains, characteristics of cellulase, and alcohol fermentation were examined. The results were summarized as follows. 1) In acid hydrolysis of wood, the high yield of reducing sugars was shown from 1.0% to 2.0% of hydrochloric acid and 2.0% of sulfuric acid. The highest yield was produced 23.4% at wood meals of Alnus japonica treated with 1.0% of hydrochloric acid. 2) The effect of raising the hydrolysis was good at $1.5kg/cm^2$, 30 times (acid/wood meal), and 45 min in treating hydrochloric acid and 30 min in treating sulfuric acid. 3) The pretreatments with concentrated sulfuric acid were more effective concentration ranged from 50% to 60% than that with hydrochloric acid and its concentration ranged from 50% to 60%. 4) The quantative analysis of sugar composition of acid hydrolysates revealed that glucose and arabinose were assayed 137.78mg and 68.24mg with Pinus densiflora, and 102.22mg and 65.89mg with Alnus janonica, respectively. Also xylose and galactose were derived. 5) The two strains of yeast which showed remarkably high alcohol productivity were Saccharomyces cerevisiae JAFM 101 and Sacch. cerevisiae var. ellipsoldeus JAFM 125. 6) The production of alcohol and the growth of yeasts were effective with the neutralization of acid hydrolysates by $CaCO_3$ and NaOH. Production of alcohol was excellent in being fermented between pH 4.5-5.5 at $30^{\circ}C$ and growth of yeasts between pH 5.0-6.0 at $24^{\circ}C$. 7) The production of alcohol was effective with the addition of 0.02% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.1% $KH_2PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, 0.02% $MnCl_2$. Growth of yeasts was effective with 0.04-0.06% $(NH_2)_2CO$ and $(NH_4)_2SO_4$, 0.2% $K_2HPO_4$ and $K_3PO_4$, 0.05% $MgSO_4$, 0.025% $CaCl_2$, and 0.002% NaCl. 8) Among various vitamins, the production of alcohol was effective with the addition to pyridoxine and riboflavin, and the growth of yeasts with the addition to thiamin, Ca-pantothenate, and biotin. The production of aocohol was increased in 0.1% concentration of tannin and furfural, but mas decreased in above concentration. 9) In 100ml of fermented solution, alcohol and yeast were produced 2.201-2.275ml and 84-114mg for wood meals of Pinus densiflora, and 2.075-2.125ml and 104-128mg for that of Alnus japonica. Residual sugars were 0.55-0.60g and 0.60-0.65g for wood meals of Pinus densiflora and Alnus japonica, respectively, and pH varied from 3.3 to 3.6. 10) A strain of Trichoderma viride JJK. 107 was selected and identified as its having the highest activity of decomposing cellulose. 11) The highest cellulase production was good when CMCase incubated for 5 days at pH 6.0, $30^{\circ}C$ and xylanase at pH 5.0, $35^{\circ}C$. The optimum conditions of cellulase activity were proper in case of CMCase at pH 4.5, $50^{\circ}C$ and xylanase at pH 4.5, $40^{\circ}C$. 12) In fermentation with enzymatic hydrolysates, the peracetic acid treatment for delignification showed the best yields of alcohol and its ratio was effective with the addition of about 10 times. 13) The production of alcohol was excellent when wood meals and Koji of wheat bran was mixed with 10 to 8 and the 10g of wood meals of Pinus densiflora produced 2.01-2.14ml of alcohol and Alnus japonica 2.11-2.20ml.

  • PDF