• Title/Summary/Keyword: enzymatic

Search Result 3,120, Processing Time 0.03 seconds

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

Effects of Aqueous Ammonia Soaking to Chemical Compositional Changes and Enzymatic Saccharification of Yellow Poplar (Liriodendron tulipifera L.) (암모니아수 침지처리가 백합나무(Liriodendron tulipifera L.)의 화학적 조성 변화와 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Yu, Ju-Hyun;Cho, Nam-Seok;Choi, In-Gyu;Kim, Mun-Sung;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.41 no.1
    • /
    • pp.61-66
    • /
    • 2009
  • Effects of aqueous ammonia soaking treatments to yellow poplar (Liriodendron tulipifera L.) were investigated to focus on chemical compositional changes and enzymatic hydrolysis characteristics changes by this treatment. Treatment temperature and time were main variables. At 3 different levels of aqueous ammonia soaking temperature and time ($145^{\circ}C$ -1 h, $90^{\circ}C$ -16 h and $45^{\circ}C$ - 6 days), lower temperature and longer soaking time led to more xylan removal based on carbohydrate compositional analysis. However, at higher temperature treatment led to more enzymatic saccharification of cellulose to glucose by commercial cellulose mixtures (Celluclast 1.5L and Novozym 342 from Novozyme, Denmark). Cellulose hydrolysis was gradually increased with increasing enzymatic hydrolysis time but xylan hydrolysis was leveled out at early stage (less than 10 h) of enzymatic hydrolysis.

A study on dextrinogenic amylase in the aspergillus niger group (Aspergillus niger group의 dextrinogenic amylase에 관한 연구)

  • 김상재;이배함;이용욱
    • Korean Journal of Microbiology
    • /
    • v.9 no.4
    • /
    • pp.155-162
    • /
    • 1971
  • A comparison of dextrinogenic amylase activities in the Asp. niger group was made with their crude and ethanol dialized enzymes before and after heating at high temperature (60-$65^{\circ}C$). The results obtained are as follows ; 1. THe dextrinogenic amylase activity of crude enzymes of Asp. kawachii and Asp. foetidus was strong, but Asp. phoernicis, Asp. carbonarius and Asp.japonicus showed weak activity. The others showed medial grades of activity. 2. The ethanol dialized enzymes of Asp. kawachii, Asp. foetidus and Asp. japonicus was very sesitive to high temperature (60 or $65^{\circ}C$) and their enzymatic activities were diminished greatly. The others did not show diminution of enzymatic activity at 60 or 65.deg.C, but diminished greatly at 70 or $75^{\circ}C$. 3. The ethanol dialized enzymes of the Asp.niger group heated to 65.deg.C was more sensitive at pH 6.0 and 6.5 than at pH 4.5, 5.0 and 5.5. 4. Tested strains in the Asp.niger group were subdivided into 4 subgroups by their dextrinogenic amylase activities before and after heating at 60 or $65^{\circ}C$. The first group showed a medial grade of activity before heating and no diminution of their enzymatic activities after heating. Asp. niger, Asp.pulverulentus, Asp. awamori and Asp. usmii were included in this group. The second group had strong enzymatic activity before heating, but diminished greatly after heating. Asp rawachii and Asp. phoenicis were included in this group. The fourth group showed very weak enzymatic activity before heating, and was inactivated easily by heating. Asp.oryzae of the Asp. flavus group showed a very strong dextrinogenic amylase activity before heating. After the heat treatment, however, its enzymatic activity was diminished greatly.

  • PDF

Antioxidant Activity of Solubilized Tetraselmis suecica and Chlorella ellipsoidea by Enzymatic Digests

  • Lee, Seung-Hong;Chang, Dong-Uk;Lee, Bae-Jin;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • In this study, we focused on natural water-soluble antioxidants from Tetraselmis suecica (T. suecica) and Chlorella ellipsoidea (C. ellipsoidea). They were prepared by enzymatic digestion using five carbohydrases (Viscozyme, Celluclast, AMG, Termamyl and Ultraflo) and five proteases (Protamex, Alcalase, Flavourzyme, Neutrase, and Kojizyme), and the potential antioxidant activity of each was assessed. Most enzymatic digests from T. suecica had a higher radical scavenging activity than those from C. ellipsoidea. Among the enzymatic digests, Kojizyme digest from T. suecica exhibited the highest effect on DPPH radical scavenging. Viscozyme (30.2%) and Neutrase (34.6%) digests from T. suecica exhibited higher hydroxyl radical scavenging activity. Kojizyme digest from T. suecica (81.5%) had strong alkyl radical scavenging activity. Neutrase (61.9%) and Kojizyme (61.5%) digest from T. suecica possessed the highest effects on hydrogen peroxide scavenging. Among the tested samples, Neutrase (TN) and Kojizyme (TK) digests from T. suecica showed the highest antioxidant activity (DPPH, alkyl radical, hydrogen peroxide). Therefore, TN and TK digests were selected for use in the further experiments. Those digests showed enhanced cell viability against $H_2O_2$-induced oxidative damage, and relatively good hydrogen peroxide scavenging activity in an African green monkey kidney (Vero) cell line. These results suggested that an enzymatic digestion will be an effective way for the production of a potential water-soluble antioxidant from a microalgae, T. suecica.

Novel enzymatic elimination method for the chromatographic purification of ginsenoside Rb3 in an isomeric mixture

  • Cui, Chang-Hao;Fu, Yaoyao;Jeon, Byeong-Min;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.784-789
    • /
    • 2020
  • Background: The separation of isomeric compounds from a mixture is a recurring problem in chemistry and phytochemistry research. The purification of pharmacologically active ginsenoside Rb3 from ginseng extracts is limited by the co-existence of its isomer Rb2. The aim of the present study was to develop an enzymatic elimination-combined purification method to obtain pure Rb3 from a mixture of isomers. Methods: To isolate Rb3 from the isomeric mixture, a simple enzymatic selective elimination method was used. A ginsenoside-transforming glycoside hydrolase (Bgp2) was employed to selectively hydrolyze Rb2 into ginsenoside Rd. Ginsenoside Rb3 was then efficiently separated from the mixture using a traditional chromatographic method. Results: Chromatographic purification of Rb3 was achieved using this novel enzymatic elimination-combined method, with 58.6-times higher yield and 13.1% less time than those of the traditional chromatographic method, with a lower minimum column length for purification. The novelty of this study was the use of a recombinant glycosidase for the selective elimination of the isomer. The isolated ginsenoside Rb3 can be used in further pharmaceutical studies. Conclusions: Herein, we demonstrated a novel enzymatic elimination-combined purification method for the chromatographic purification of ginsenoside Rb3. This method can also be applied to purify other isomeric glycoconjugates in mixtures.

Surface Modification and Enzymatic Degradation of Microbial Polyesters by Plasma Treatments (플라즈마를 이용한 미생물합성 폴리에스테르의 표면개질과 효소분해성)

  • Kim, Jun;Lee, Won-Ki;Ryou, Jin-Ho;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • Since the enzymatic degradation of microbial poly(hydroxylalkanoate)s (PHAs), such as poly[(R)-3-hydroxybutyrate] and poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] initially occurs by a surface erosion process, their degradation behaviors can be controlled by the change of surface property. In order to control the rate of enzymatic degradation, plasma modification technique was applied to change the surface property of microbial PHAs. The surface hydrophobic and hydrophilic properties of PHA films were introduced by $CF_3H$ and $O_2$ plasma exposures, respectively. The enzymatic degradation was carried out at $37^{\circ}C$ in 0.1 M potassium phosphate buffer (pH 7.4) in the presence of an extracellular PHB depolymerase purified from Alcaligenes facalis T1. The results showed that the significant retardation of initial enzymatic erosion of $CF_3H$ plasma-treated PHAs was observed due to the hydrophobicity and the enzyme inactivity of the fluorinated surface layers while the erosion rate of $O_2$ plasma-treated PHAs was not accelerated.

  • PDF

Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant

  • FATRIASARI, Widya;NURHAMZAH, Fajar;RANIYA, Rika;LAKSANA, R.Permana Budi;ANITA, Sita Heris;ISWANTO, Apri Heri;HERMIATI, Euis
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.651-665
    • /
    • 2020
  • Hydrolysis of biomass for the production of fermentable sugar can be improved by the addition of surfactants. In pulp and paper mills, lignin, which is a by-product of the pulping process, can be utilized as a fine chemical. In the hydrolysis process, lignin is one of the major inhibitors of the enzymatic breakdown cellulose into sugar monomer. Therefore, the conversion of lignin into a biosurfactant offers the opportunity to solve the waste problem and improve hydrolysis efficiency. In this study, lignin derivatives, a biosurfactant, was applied to enzymatic hydrolysis of various lignocellulosic biomass. This Biosurfactant can be prepared by reacting lignin with a hydrophilic polymer such as polyethylene glycol diglycidylethers (PEDGE). In this study, the effect of biosurfactants on the enzymatic hydrolysis of pretreated sweet sorghum bagasse (SSB), oil palm empty fruit bunch, and sugarcane trash with different lignin contents was investigated. The results show that lignin derivatives improve the enzymatic hydrolysis of the pretreated biomass with low lignin content, however, it has less influence on the enzymatic hydrolysis of other pretreated biomass with lignin content higher than 10% (w/w). The use of biosurfactant on SSB kraft pulp can increase the sugar yield from 45.57% to 81.49%.

Study on the Change of Antioxidant Activity by Enzymatic Hydrolysis in Sophora japonica Linne, Houttuynia cordata Thunberg, Leonurus japonicus Houttuyn (괴화, 어성초, 익모초에서 효소 분해에 의한 항산화 활성 변화 연구)

  • Cha, Bae Cheon
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Objectives: The enzymatic hydrolysis is one of the processing methods that improve its effectiveness on medicinal herbs. In this research, changes in ingredients and activity by enzymatic hydrolysis were studied. Methods: For this study, a carbohydrate hydrolase such as viscozyme, which converts glycosides to aglycone, was applied to induce constituent changes in Sophora japonica Linne, Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn. Changes in antioxidant activity were measured using the 1,1-diphenyl-2-picrylhydrazl (DPPH) method, and changes in ingredients were analyzed by high performance liquid chromatography. Results: As a result of enzymatic hydrolysis, the content of quercetin was increased from 1.26 mg/g to 29.66 mg/g in Sophora japonica Linne, from 0 mg/g to 0.66 mg/g in Houttuynia cordata Thunberg and from 0.43 mg/g to 0.71 mg/g in Leonurus japonicus Houttuyn. As a result of the antioxidant experimentation, the IC50 of Sophora japonica Linne decreased from 5 ug/ml (MeOH extract) and 9.1 ug/ml (EtOAc fraction) to 3.0 ug/ml, Houttuynia cordata Thunberg decreased from 15.6 ug/ml (MeOH extract) and 13.6 ug/ml (EtOAc fraction) to 11.2 ug/ml, and Leonurus japonicus Houttuyn decreased from 14.4 ug/ml (MeOH extract) and 12.6 ug/ml (EtOAc fraction) to 10.2 ug/ml. Conclusion: In conclusion, it was confirmed that glycoside rutin contained in the three medicinal herbs was changed to quercetin which is the aglycone, by the enzymatic hydrolysis using viscozyme. In terms of antioxidant activity, Sophora japonica Linne showed a significant antioxidant activity value that closes to the control group butylated hydroxyanisole. Houttuynia cordata Thunberg and Leonurus japonicus Houttuyn showed a minor increase in antioxidant activity.

Desmutagenicity of the Enzymatic Browning Reaction Products Which Obtained from Prunus salicina (yellow) Enzyme and Polyphenol Compounds (재래종 황색자두효소 갈변반응 생성물의 돌연변이 억제작용)

  • Ham, Seung-Shi
    • Applied Biological Chemistry
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 1987
  • The mutagenicity and desmutagenicity on enzymatic browning reaction products which obtained from prunes salicina (yellow) enzyme and polyphenol compounds were carried out. In the rec-assay on Bacillus subtilis strains H17 and M45, the enzymatic browning reaction products of pyrogallol, hydroxyhydroquinone, 3,4-dihydroxytoluene and catechol of $10^{-2}M$ did not showed mutagenicity. In the effects of various metal ions on the rec-assay, the enzymatic browning reaction products of pyrogallol showed mutagenic activity by $Fe^{3+},\;Mn^{2+},\;Zn^{2+},\;Ni^{2+}$ and $Al^{3+}$. In the enzymatic browning reaction products of hydroxyhydroquinone, $Cu^{2+},\;Mn^{2+}$ and $Pb^{2+}$ were effected in mutagenic action and the enzymatic browning reaction products of catechol was effected in mutagenic action by $Mn^{2+}$. In the DNA-breaking action of enzymatic browning reaction products of pyrogallol, hydroxyhydroquinone, 3,4-dihyroxytoluene and catechol did not show, DNA-breaking action. In the effects of various metal ions on the DNA-breaking action of enzymatic browning reaction products, $Cu^{2+}$ showed DNA-breaking action. In the mutagenicity test on Sal. typhimurium strains TA98 and TA 100 with S-9 mix, 4 kinds of browned substances did sot shove muragenicity, all the browned substances showed strong desmutagenic activity in the presence of benzo $({\alpha})-pyrene$ with S-9 mix.

  • PDF