DOI QR코드

DOI QR Code

Enzymatic Hydrolysis Performance of Biomass by the Addition of a Lignin Based Biosurfactant

  • FATRIASARI, Widya (Research Center for Biomaterials LIPI) ;
  • NURHAMZAH, Fajar (Diploma Program for Chemical Analysis, Bogor Agricultural University) ;
  • RANIYA, Rika (Department of Environmental Health, Faculty of Public Health, University of Indonesia) ;
  • LAKSANA, R.Permana Budi (Research Center for Biomaterials LIPI) ;
  • ANITA, Sita Heris (Research Center for Biomaterials LIPI) ;
  • ISWANTO, Apri Heri (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara) ;
  • HERMIATI, Euis (Research Center for Biomaterials LIPI)
  • Received : 2020.07.07
  • Accepted : 2020.08.10
  • Published : 2020.09.25

Abstract

Hydrolysis of biomass for the production of fermentable sugar can be improved by the addition of surfactants. In pulp and paper mills, lignin, which is a by-product of the pulping process, can be utilized as a fine chemical. In the hydrolysis process, lignin is one of the major inhibitors of the enzymatic breakdown cellulose into sugar monomer. Therefore, the conversion of lignin into a biosurfactant offers the opportunity to solve the waste problem and improve hydrolysis efficiency. In this study, lignin derivatives, a biosurfactant, was applied to enzymatic hydrolysis of various lignocellulosic biomass. This Biosurfactant can be prepared by reacting lignin with a hydrophilic polymer such as polyethylene glycol diglycidylethers (PEDGE). In this study, the effect of biosurfactants on the enzymatic hydrolysis of pretreated sweet sorghum bagasse (SSB), oil palm empty fruit bunch, and sugarcane trash with different lignin contents was investigated. The results show that lignin derivatives improve the enzymatic hydrolysis of the pretreated biomass with low lignin content, however, it has less influence on the enzymatic hydrolysis of other pretreated biomass with lignin content higher than 10% (w/w). The use of biosurfactant on SSB kraft pulp can increase the sugar yield from 45.57% to 81.49%.

Keywords

References

  1. Abdeli, F., Rigane, G., Salem, B., El Arbi., Aifa, S., Cherif, S. 2019. Use of surfactants and biosurfactants in oil recovery processing and cellulose hydrolysis. Journal of Bacteriology and Mycology 6(5): 1-4.
  2. Alinejad, M., Henry, C., Nikafshar, S., Gondaliya, A., Bagheri, S., Chen, N., Singh, S.K., Hodge, D.B., Nejad, M. 2019. Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 11(7): 1-21.
  3. Anita, S.H., Fitria., Solihat, N.N., Sari, F.P., Risanto, L., Fatriasari, W., Hermiati, E. 2020. Optimization of microwave-assisted oxalic acid pretreatment of oil palm empty fruit bunch for production of fermentable sugars. Waste and Biomass Valorization 11(6): 2673-2687. https://doi.org/10.1007/s12649-018-00566-w
  4. Arnieyanto, D.R. 2018. Praperlakuan pemanasan gelombang mikto dan asam untuk peningkatan hidrolisis selulosa daun tebu (Saccharum officinarum) oleh selulase. Tesis Program Studi Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pakuan (In Indonesia).
  5. Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S., Saddler, J. 2006. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125(2): 198-209. https://doi.org/10.1016/j.jbiotec.2006.02.021
  6. Bin, Y., Chen, H. 2010. Effect of the ash on enzymatic hydrolysis of steam-exploded rice straw. Bioresource Technology 101(3): 9114-9119. https://doi.org/10.1016/j.biortech.2010.07.033
  7. Cheng, N., Yamamoto, Y., Koda, K., Tamai, Y., Uraki, Y. 2014. Amphipathic lignin derivatives to accelerate simultaneous saccharification and fermentation of unbleached softwood pulp for bioethanol production. Bioresource Technology 173: 104-109. https://doi.org/10.1016/j.biortech.2014.09.093
  8. Cheng, N., Koda, K., Tamai, Y., Yamamoto, Y., Takasuka, T.E., Uraki, Y. 2017. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Bioresource Technology 232: 126-132. https://doi.org/10.1016/j.biortech.2017.02.018
  9. Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J., Markevicius, G. 2012. Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse. Biomass Bioenergy 39: 218-226. https://doi.org/10.1016/j.biombioe.2012.01.006
  10. Daorattanachai, P., Viriya-empikul, N., Laosiripoiana, N., Faungnawakij, K. 2013. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water. Bioresource Technology 144: 504-512. https://doi.org/10.1016/j.biortech.2013.06.124
  11. Elgharbawy, A.A., Alam, M.Z., Moniruzzaman, M., Goto, M. 2016. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochemical Engineering Journal 109: 252-267. https://doi.org/10.1016/j.bej.2016.01.021
  12. Eriksson, T., Borjesson, J., Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme and Microbial Technology 31(3): 353-364. https://doi.org/10.1016/S0141-0229(02)00134-5
  13. Fajriutami, T., Fatriasari, W., Hermiati, E. 2016. Effects of Alkaline pretreatment of sugarcane bagasse on pulp characterization and reducing sugar production. Jurnal Riset Industri 10(3): 147-161 (In Indonesia).
  14. Fatriasari, W., Supriyanto, Iswanto, A.H. 2015. The kraft pulp and paper properties of sweet sorghum bagasse (Sorghum bicolor L Moench). Journal of Engineering and Technological Sciences 47(2): 149-159. https://doi.org/10.5614/j.eng.technol.sci.2015.47.2.4
  15. Fatriasari, W., Raniya, R., Anita, S.H., Hermiati, E. 2016. Conversion of oil palm empty fruit bunches (OPEFB) for bioethanol produce through microwave assisted organic acid pretreatment. Biorefinery Project Report (unpublished work).
  16. Fatriasari, W., Anita, S. H., Risanto, L. 2017. Microwave assisted acid pretreatment of oil palm empty fruit bunches (EFB) to enhance its fermentable sugar production. Waste and Biomass Valorization 8: 79-91.
  17. Fatriasari, W., Adi, D.T.N., Laksana, R.P.B., Fajriutami, T., Raniya, R., Ghozali, M., Hermiati, E. 2018. The effect of amphipilic lignin derivatives addition on enzymatic hydrolysis performance of kraft pulp from sorghum bagasse. IOP Conf. Series: Earth and Environmental Science 141(012005): 1-7.
  18. Fatriasari, W., Hamzah, F.N., Pratomo, B.I., Fajriutami, T., Ermawar, R.A., Falah, F., Laksana, R.P.B., Ghozali, M., Iswanto, A.H., Hermiati, E., Winarni, I. 2020. Optimizing the synthesis of lignin derivatives from acacia mangium to improve the enzymatic hydrolysis of kraft pulp sorghum bagasse. International Journal of Renewable Energy Development 9(2): 227-235. https://doi.org/10.14710/ijred.9.2.227-235
  19. Fengel, D., Wegener, G. 1989. Chemistry, Ultrastructure, Reaction, Walter de Gruyter, Berlin.
  20. Focher, B., Palma, M.T., Canetti, M., Torri, G., Cosentino, C., Gastaldi, G. 2001. Structural differences between non-wood plant celluloses: Evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Industrial Crops and Products 13(3): 193-208. https://doi.org/10.1016/S0926-6690(00)00077-7
  21. Fortunati, E., Luzi, F., Puglia, D., Torre, L. 2016. Chapter 1 - Extraction of Lignocellulosic Materials from Waste Products Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements, pp. 1-38.
  22. Goh, C.S., Tan, H.T., Lee, K.T. 2012. Pretreatment of oil palm frond using hot compressed water: An evaluation of compositional changes and pulp digestibility using severity factors. Bioresource Technology 110: 662-669. https://doi.org/10.1016/j.biortech.2012.01.083
  23. Gómez, E.O., de Souza, R.T.G., de Moraes, R.G.J., de Almeida, E., Cortez, L.A.B. 2014. Sugarcane trash as feedstock for second generation processes. In: Cortez LAB (ed) Sugarcane bioethanol-R&D for Productivity and Sustainability, Editora Edgard Blucher, Sao Paulo, pp. 637-660.
  24. Goshadrou, A., Karimi, K., Taherzadeh, M.J. 2011. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Industrial Crops and Products 34(1): 1219-1225. https://doi.org/10.1016/j.indcrop.2011.04.018
  25. Han, S-Y., Park, C-W., Kwon, G-J., Kim, J-H.,Kim, N-H., Lee, S-H. 2020. Effect of [EMIM]Ac recycling on Salix gracilistyla Miq. pretreatment for enzymatic saccharification. Journal of the Korean Wood Science and Technology 48(3): 405-413. https://doi.org/10.5658/WOOD.2020.48.3.405
  26. Helle, S.S., Duff, S.J.B, Cooper, D.G. 1993. Effect of surfactants on cellulose hydrolysis. Biotechnology and Bioengineering 42(5): 611-617. https://doi.org/10.1002/bit.260420509
  27. Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology 100(1): 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
  28. Hermiati, E., Oktaviani, M., Ermawar, R.A., Laksana, RPB, Kholida, LN, Thantowi, A., Mardiana, S.M., Watanabe, T. 2020. Optimization of xylose production from sugarcane trash by microwave- maleic acid hydrolysis. Reaktor 20(2): 81-88. https://doi.org/10.14710/reaktor.20.2.81-88
  29. Iswanto, A.H., Aritonang, W., Azhar, I, Supriyanto, Fatriasari, W. 2017. The physical, mechanical and durability properties of sorghum bagasse particleboard by layering surface treatment. Journal of the Indian Academy of Wood Science 14: 1-8. https://doi.org/10.1007/s13196-016-0181-7
  30. Jonsson, L.J., Alriksson, B., Nilvebrant, N.O. 2013. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels 6(16): 2-10. https://doi.org/10.1186/1754-6834-6-2
  31. Jutakanoke, R., Tolieng, V., Tanasupawat, S., Akaracharanya, A. 2017. Ethanol production from sugarcane leaves by Kluyveromyces marxianus S1.17, a genome-shuffling mediated transformant. BioResources. 12(1): 1636-1646.
  32. Kaar, W.E., Holtzapple, M.T. 1998. Benefits from tween during enzymic hydrolysis of corn stover. Biotechnology and Bioengineering 59(4): 419-427. https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4<419::AID-BIT4>3.0.CO;2-J
  33. Kim, M.H., Lee, S.B., Ryu, D.D.Y., Reese, E.T. 1982. Surface deactivation of cellulase and its prevention. Enzyme and Microbial Technology 4(2): 99-103. https://doi.org/10.1016/0141-0229(82)90090-4
  34. Kumar, D.S., Marimuthu, P. 2012. Sweet sorghum stalks-an alternate agro based raw material for paper making. IPPTA Journal 24(3): 47-50.
  35. Lai, C., Tu, M., Shi, Z., Zheng, K., Olmos, L.G., Yu. 2014. Contrasting effects of hardwood and softwood organosolv lignins on enzymatic hydrolysis of lignocellulose. Bioresource Technology 163: 320-327. https://doi.org/10.1016/j.biortech.2014.04.065
  36. Lee, J-W., Rodrigues, R.C.L.B., Kim, H.J., Choi, I-G., Jeffries, T.W. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101(12): 4379-4385. https://doi.org/10.1016/j.biortech.2009.12.112
  37. Li, Y., Sun, Z., Ge, X., Zhang, J. 2016. Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnology for Biofuels 9(20): 1-9. https://doi.org/10.1186/s13068-015-0423-8
  38. Li, X., Li, M., Pu, Y., Ragauskas, A.J., Klett, A.S., Thies, M., Zheng, Y. 2018. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy 123: 664-674. https://doi.org/10.1016/j.renene.2018.02.079
  39. Loow, Y.-L., Wu, T.Y., Md. Jahim, J., Mohammad, A.W., Teoh, W.H. 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose 23(3): 1491-1520. https://doi.org/10.1007/s10570-016-0936-8
  40. Lukmandaru, G. 2016. Correlation between extractive content and colour properties in teak heartwood. Jurnal Penelitian Hasil Hutan 34(3): 207-216. https://doi.org/10.20886/jphh.2016.34.3.207-216
  41. Malmsten, M., Van Alstine, J.M. 1996. Adsorption of poly (ethylene glycol) amphiphiles to form coatings which inhibit protein adsorption. Journal of Colloid and Interface Science 177(2): 502-512. https://doi.org/10.1006/jcis.1996.0064
  42. Merklein, K., Fong, S.S., Deng, Y. 2016. Chapter 11. Biomass utilization in biotechnology for biofuel production and optimization. Biotechnology for Biofuel Production and Optimization, pp. 291-324.
  43. Miller, G.L. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar Analitical Chemistry 31(3): 426-428. https://doi.org/10.1021/ac60147a030
  44. Min, C.H., Um, B.H. 2017. Effect of process parameters and kraft lignin additive on the mechanical properties of miscanthus pellets. Journal of the Korean Wood Science and Technology 45(6): 703-719. https://doi.org/10.5658/WOOD.2017.45.6.703
  45. Monrroy, M., Garcia, J.R., Mendonca, R.T., Baeza, J., Freer, J., Chil, J. 2012. Kraft pulping of Eucalyptus globulus as a pretreatment for bioethanol production by simultaneous saccharification and fermentation. Journal of the Chilean Chemical Society 57(2): 1113-1117. https://doi.org/10.4067/S0717-97072012000200012
  46. Moodley, P., Kana, E.B.G. 2015. Optimization of xylose and glucose production from sugarcane leaves (Saccharum officinarum) using hybrid pretreatment techniques and assessment for hydrogen generation at semi-pilot scale. International Journal of Hydrogen Energy 40(10): 3859-3867. https://doi.org/10.1016/j.ijhydene.2015.01.087
  47. Mussatto, S.I., Fernandes, M., George, J.M.R., José, J.M.O., José, A.T., Roberto, I.C. 2010. Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology 101(7): 2450-2457. https://doi.org/10.1016/j.biortech.2009.11.025
  48. Nababan, M.Y.S., Fatriasari, W., Wistara, N.J. 2020. Response surface methodology for enzymatic hydrolysis optimization of jabon alkaline pulp with Tween 80 surfactant addition. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00807-w
  49. Nakagame, S., Chandra, R.P., Kadla, J.F., Saddler, J.N. 2011. The isolation, characterization and effect of lignin isolated from steam pretreated douglas-fir on the enzymatic hydrolysis of cellulose. Bioresource Technology 102(6): 4507-4517. https://doi.org/10.1016/j.biortech.2010.12.082
  50. Oktaviani, M., Hermiati, E, Thontowi, A., Laksana, R.P.B., Kholida, L.N., Adriani, A, Yopi, W., Mangunwardoyo, W. 2019. Production of xylose, glucose, and other products from tropical lignocellulose biomass by using maleic acid pretreatment. IOP Conference Series: Earth Environmental. Science 251(012013): 1-9.
  51. Pareek, N., Gillgren, T., Jönsson, L.J. 2013. Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technology 148: 70-77. https://doi.org/10.1016/j.biortech.2013.08.121
  52. Patil, J.V., Chari, A., Rao, SV., Mathur, R.M., Vimelesh, B., Lal, P.S. 2011. High Bio-Mass Sorghum (Sorghum bicolor): An alternate raw material for pulp and paper making in India. IPPTA Journal 23(2): 161-165.
  53. Punyamurthy, R., Sampath, K.D, Bennehalli, B., Srinivasa, C.V. 2013. Influence of esterification on the water absorption property of single abaca fiber. Chemical Science Transaction 2(2): 413-422. https://doi.org/10.7598/cst2013.371
  54. Qing, Q., Yang, B., Wyman, C.E. 2010. Impact of surfactants on pretreatment of corn stover. Bioresource Technology 101(15): 5941-5951. https://doi.org/10.1016/j.biortech.2010.03.003
  55. Rahikainen, J.L., Martin-Sampedro, R., Heikkinen, H., Rovio, S., Marjamaa, K., Tamminen, T., Rojas, O.J., Kruus, K. 2013. Inhibitory effect of lignin during cellulose bioconversion: The effect of lignin chemistry on non-productive enzyme adsorption. Bioresource Technology 113: 270-278.
  56. Rowell, R.M., Pettersen, R., Han, J.S., Rowell, J.S., Tshabalala, M.A. 2005. Chapter 3: Cell Wall Chemistry in Handbook Wood Chemistry and Wood Composites, 1st ed., CRC Press, pp. 71-72.
  57. Sills, D.L., Gossett, J.M. 2011. Assessment of commercial hemicellulases for saccharification of alkaline pretreated perennial biomass. Bioresource Technology 102(2): 1389-1398. https://doi.org/10.1016/j.biortech.2010.09.035
  58. Singh, D.P., Trivedi, R.K. 2013. Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research. 5(2): 727-734.
  59. Sjostrom, E. 1998. Wood Chemistry. Fundamentals and Applications. Gadjah Mada University Press. Yogyakarta.
  60. Sjostrom, E. 1981. Wood Chemistry: Fundamentals and Applications, 2nd ed., Academic Press, San Diego, USA.
  61. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. 2012. Determination of Structural Carbohydrates and Lignin in Biomass Technical Report NREL/TP-510-42618.
  62. Solihat, N.N., Fajriutami, T., Adi, D.T.N., Fatriasari, W., Hermiati, E. 2017. Reducing sugar production of sweet sorghum bagasse kraft pulp. AIP Conference Proceeding. 1803: 020012-1 - 020012-8.
  63. Uraki, Y., Ishikawa, N., Nishida, M., Sano, Y. 2001. Preparation of amphiphilic lignin derivative as a cellulase stabilizer. Journal of Wood Science 47(4): 301-307. https://doi.org/10.1007/BF00766717
  64. Wang, W., Zhuang, X., Yuan, Z., Yu, Q., Qi, W., Wang, Q., Tan, X. 2012. High consistency enzymatic saccharification of sweet sorghum bagasse pretreated with liquid hot water. Bioresource Technology 108: 252-257. https://doi.org/10.1016/j.biortech.2011.12.092
  65. Wang, W., Wang, C., Zahoor, Chen, X., Yu, Q., Wang, Z., Zhuang, X., Yuan, Z. 2020. Effect of a nonionic surfactant on enzymatic hydrolysis of lignocellulose based on lignocellulosic features and enzyme adsorption. ACS Omega 5(26): 15812-15820. https://doi.org/10.1021/acsomega.0c00526
  66. Winarni, I., Koda K., Waluyo, T.K., Pari, G., Uraki, Y. 2014. Enzymatic saccharification of soda pulp from sago starch waste using sago lignin-based amphipathic derivatives Journal of Wood Chemistry and Technology 34(3): 157-168. https://doi.org/10.1080/02773813.2013.846912
  67. Winarni, I., Oikawa, C., Yamada, T., Igarashi, K., Koda, K.,Uraki, Y. 2013. Improvement of enzymatic saccharification of unbleached cedar pulp with amphipathic lignin derivatives. Bioresources 8(2): 2195-2208.
  68. Wise, L.E., Murphy, M., Addieco, A.A. 1946. Chlorite holocellulose, Its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Paper Trade Journal 122(2): 35-43.
  69. Wright, R.T., Wiyono, E. 2013. USDA Foreign Agricultural Service: Indonesia oilseeds and products update. (http://gain.fas.usda.gov/Recent GAIN Pub lications/ Oilseeds and Products Update_Jakarta_Indonesia_5-4-20), Accessed 27 Apr. 2017.
  70. Xu, J., Cheng, J.J., Sharma-Shivappa, R.R., Burns, J.C. 2010. Sodium hydroxide pretreatment of switchgrass for ethanol production. Energy Fuels 24(3): 2113-2119. https://doi.org/10.1021/ef9014718
  71. Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F., Kim, N.H. 2019. Effect of biological and liquid hot water pretreatments on ethanol yield from Mengkuang (Pandanus artocarpus Griff). Journal of the Korean Wood Science and Technology 47(2): 145-162. https://doi.org/10.5658/WOOD.2019.47.2.145
  72. Zong, Z., Ma, L., Yu, L., Zhang, D., Yang, Z., Chen, S. 2015. Characterization of the interactions between polyethylene glycol and cellulase during the hydrolysis of lignocellulose. BioEnergy Research 8(1): 270-278. https://doi.org/10.1007/s12155-014-9516-7