• Title/Summary/Keyword: enzymatic

Search Result 3,114, Processing Time 0.028 seconds

Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles

  • Hu, Qiongzheng;Jang, Chang-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1262-1266
    • /
    • 2010
  • In this study, we investigated the use of liquid crystals to selectively detect the activity of enzymes at interfaces decorated with oligopeptide-based membranes. We prepared a mixed monolayer of tetra(ethylene glycol)-terminated lipids and carboxylic acid-terminated lipids at the aqueous-liquid crystal (LC) interface. The 17 amino-acid oligopeptide SNFKTIYDEANQFATYK was then immobilized onto this mixed monolayer through N-hydroxysuccinimide-activation of the carboxylic acid groups. We examined the orientational behavior of nematic 4-cyano-4'-pentylbiphenyl (5CB) after conjugation of the 17 amino-acid oligopeptide with the mixed monolayer assembled at the interface. Immobilization of the oligopeptide caused orientational transitions in 5CB, with a change from homeotropic (perpendicular) to tilted alignment, which was primarily due to the reorganization of the monolayer. The orientation of the 5CB molecules returned to its homeotropic state after contacting the interface containing ${\alpha}$-chymotrypsin, which can cleave the immobilized oligopeptide. Control experiments confirmed that the enzymatic activity of ${\alpha}$-chymotrypsin triggered the ordering transitions in the LC. These results suggest that the LC can provide a facile method for selective detection of enzymatic activity.

Immobilization of Lipase using Alginate Hydrogel Beads and Enzymatic Evaluation in Hydrolysis of p-Nitrophenol Butyrate

  • Zhang, Shuang;Shang, Wenting;Yang, Xiaoxi;Zhang, Shujuan;Zhang, Xiaogang;Chen, Jiawei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2741-2746
    • /
    • 2013
  • The immobilization of enzyme is one of the key issues both in the field of enzymatic research and industrialization. In this work, we reported a facile method to immobilize Candida Antarctica lipase B (CALB) in alginate carrier. In the presence of calcium cation, the enzyme-alginate suspension could be cross-linked to form beads with porous structure at room temperature, and the enzyme CALB was dispersed in the beads. Activity of the enzyme-alginate composite was verified by enzymatic hydrolysis reaction of p-nitrophenol butyrate in aqueous phase. The effects of reaction parameters such as temperature, pH, embedding and lyophilized time on the reactive behavior were discussed. Reuse cycle experiments for the hydrolysis of p-nitrophenol butyrate demonstrated that activity of the enzyme-alginate composite was maintained without marked deactivation up to 6 repeated cycles.

Industrial Applications of Saccharification Technology for Red Seaweed Polysaccharide (산업적 응용을 위한 홍조류 당화 기술)

  • Hong, Chae-Hwan;Kim, Se Won;Kim, Yong-Woon;Park, Hyun-Dal;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.307-315
    • /
    • 2014
  • Recently seaweed polysaccharides have been extensively studied for alternative energy application. Because their producing cost is high and efficiency low, their industrial applications have been limited. The main component of cell wall of red algae represented by Gelidiales and Gracilariales is agar. Red-algae agar or galactan, consisting of D-galactose and 3, 6-anhydro-L-galactose, is suitable for bio-product application if hydrolyzed to monomer unit. For the hydrolysis of algae, chemical or enzymatic treatment can be used. A chemical process using a strong acid is simple and efficient, but it generates together with target sugar and toxic compounds. In an enzymatic hydrolysis process, target sugar without toxic compounds generation. The objective of this review is to summary the recent data of saccharification by chemical and enzymatic means from red seaweed for especially focused on automobile industry.

Chemical Characteristics and Ethanol Fermentation of the Cellulose Component in Autohydrolyzed Bagasse

  • Asada Chikako;Nakamura Yoshitoshi;Kobayashi Fumihisa
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.4
    • /
    • pp.346-352
    • /
    • 2005
  • The chemical characteristics, enzymatic saccharification, and ethanol fermentation of autohydrolyzed lignocellulosic material that was exposed to steam explosion were investigated using bagasse as the sample. The effects of the steam explosion on the change in pH, organic acids production, degrees of polymerization and crystallinity of the cellulose component, and the amount of extractive components in the autohydrolyzated bagasse were examined. The steam explosion decreased the degree of polymerzation up to about 700 but increased the degree of crystallinity and the micelle width of the cellulose component in the bagasse. The steam explosion, at a pressure of 2.55 MPa for 3 mins, was the most effective for the delignification of bagasse. 40 g/L of glucose and 20 g/L of xylose were produced from 100 g/L of the autohydrolyzed bagasse by the enzymatic saccharification using mixed cellulases, acucelase and meicelase. The maximum ethanol concentration, 20 g/L, was obtained from the enzymatic hydrolyzate of 100 g/L of the autohydrolyzed bagasse by the ethanol fermentation using Pichia stipitis CBS 5773; the ethanol yield from sugars was 0.33 g/g sugars.

Production of Yeast Extract by a Combined Method of Autolysis and Enzymatic Hydrolysis (자기소화와 효소가수분해 방법을 병용한 효모 추출물의 제조)

  • 인만진;채희정
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.245-249
    • /
    • 2004
  • A combined method of autolysis and enzymatic hydrolysis of baker's yeast was developed for the production of yeast extract, which is widely used as a natural food ingredient. From statistical analysis, NaCl and ethanol addition were found to be significantly effective factors in autolysis of yeast. The optimum dosages of salt and ethanol were 3% and 1%, respectively. Heat treatment and the use of cell lytic enzyme were not significantly effecting on the autolysis. Yeast hydrolysate was prepared by autolysis, followed by enzymatic hydrolysis using proteases, nuclease and deaminase. Additionally, the hydrolysate was processed by downstream process including Maillard reaction and debittering. The total dry matter yield and total nitrogen yield for the process were 76% and 59%, respectively. Compared to a process using brewer's yeast, when baker's yeast was used as a raw material, a higher recovery yield was obtained.

Resistant Starch Yield from Autoclaved Maize Starches with Different Enzymatic Assay (분리방법에 따른 효소저항전분의 수율 비교)

  • Lee, Shin-Kyung;Mun, Sae-Hun;Shin, Mal-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.383-386
    • /
    • 1997
  • Maize starches with different amylose content were repeated autoclaving-cooling cycles up to 4 times, and the yield of resistant starch (RS) from autoclaved maize starches was investigated by enzymatic-gravimetric method and ${\alpha}-amylase$ treatment. With increasing amylose content in starch and the number of autoclaving-cooling cycles, RS yield was also increased, regardless of isolation method. Enzymatic-gravimetric method severely hydrolyzed amorphous region of autoclaved maize starches. Crystalline region was obtained more effectively by enzymatic-gravimetric method than by ${\alpha}-amylase$ treatment.

  • PDF

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

Localization of Germin Genes and Their Products in Developing Wheat Coleoptiles

  • Caliskan, Mahmut;Ozcan, Birgul;Turan, Cemal;Cuming, Andrew C.
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.339-342
    • /
    • 2004
  • Germination is a process which characterized with nescient synthesis of genes. Among the genes synthesized during the germination of wheat embryos, germin genes, proteins and their enzymatic activity were defined. Germin is a water soluble homopentameric glycoprotein which is remarkable resistant to degradation by a broad range of proteases including pepsin. Germin proteins found to have strong oxalate oxidase activity which produces hydrogen peroxide by degrading oxalic acid. The current study, aimed to localize the germin genes, proteins and enzymatic activities in developing coleoptiles which is a rapidly growing protective tissue of leaf primordium and shoot apex. Non-radioactively abeled germin riboprobes were employed to localize germin mRNAs in situ. FITC (Fluorescein isothiocyanate) and alkaline phosphatase linked anti-germin antibodies were used to localize germin proteins under the fluorescence and light microscopy and finally germin enzymatic activity was localized by using appropriate enzyme assay. The results revealed that in coleoptiles germin genes, proteins and their enzymatic activity were predominantly associated with the cells of epidermis and vascular bundle sheath cells.

Enzymatic Hydrolysis for Effective Extraction of Antioxidative Compounds from Hizikia fusiformis

  • Siriwardhana, Nalin;Jeon, You-Jin;Kim, Soo-Hyun;Ha, Jin-Hwan;Heo, Soo-Jin;Lee, Ki-Wan
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 2004
  • Hizikia fusiformis hydroysates by five carbohydrases (Viscozyme, Celluclast, Termamyl and Ultraflo) and five proteases (Protamex, Kojizyme, Neutrase, Flavourzyme and Alcalase) were investigated for their extraction efficacy (yield and total total polyphenolic content) and antioxidative activity (DPPH radical and hydrogen peroxide scavenging activity). Termamyl and Ultraflo of the carbohydrases and Flavourzyme and Alcalase of proteases were selected by their high eficacy of extraction and antioxidative activity. Selected enzymes were used to investigate the optimum enzymatic reaction time and dosage (enzyme/substrate ratio) suitable for hydorolysis. Optimum reaction time for the enzymatic hydrolysis was 3 days and optimum dosage of hydrolysis was observed as 5%. Simultaneously, Ultraflo of the two carbohydrases and Alcalse of the two proteases were selected as the most effective enzymes. Combination of Ultraflo and Alcalase under optimum hydrolysis conditions could intensify the extraction efficacy of antioxidative materials form H. fusiformis. The hydrolysate obtained by combining the enzymes was separated into four different molecular weight fractions (<1kD, 1-10 kD, 10-30 kD and >30 kD) and recorded the polyphenolic content distribution and respective antioxidative ability. The fraction <1kD was identified as less effective and those fractions > 1kD indicated comparatively higher antioxidative activities related to their polyphenolic content.

A Comparison of Silk Fibroin Hydrolysates by Hydrochlonic Acis and Proteolytic Enzymes

  • Sh. R. Madyarov;Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Enzymatic hydrolysis of different forms of silk fibroin (soluble, gel and insoluble forms) by industrial and commercial enzyme preparations to obtain aqueous and powdered silk fibroin in relatively mild conditions was investigated. A mono-enzymatic hydrolysate systems were tested for hydrolysis of water-soluble form of fibroin as most productive form of protein substrate. Insoluble forms of substrate usually were hydrolyzed less effective. In some cases from soluble fibroin substrate gel was formed during hydrolysis process. This hindered intermixing and decreased rates of hydrolysis. Insoluble sediments were formed in enzymatic hydrolysates in other cases. These sediments and also sediment after chemical hydrolysis were purified and tested on amino acids content for comparison. Sediments formation in these conditions are considered as pure tyrosine isolation method. Obtained hydrolysates were characterized by gel-chromatography analysis and other standard biochemical methods. Possibility of application of enzymatic hydrolysis for preparation of silk fibroin hydrolysates is discussed.

  • PDF