• Title/Summary/Keyword: environmental stress response

Search Result 545, Processing Time 0.026 seconds

Relationship between the State Parameter and Cone Resistance of Busan Sand (부산모래의 상태정수와 콘저항치 상관관계)

  • Kim, Seung-Han;Lee, Moon-Joo;Choi, Sung-Kun;Hong, Sung-Jin;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.123-131
    • /
    • 2007
  • A series of CIDC triaxial tests and cone penetration tests in calibration chamber were performed to investigate the relationship between state parameter and normalized cone resistance far dredged Busan sand. From the results of the triaxial tests, the critical state line of Busan sand was established, and the critical state parameters found to be $M=1.39(\phi_{cs}=34^{\circ}),\;\Gamma=1.07$ and $\lambda=0.068$. By analyzing the state parameters and corresponding cone resistances for calibration chamber specimens, the relationship between normalized cone resistance and state parameter for Busan sand was defined as $(q_c-p)/p'=27.6\exp(-10.9\Psi)$. This relationship was also shown to be independent of the stress history. From the comparison of the slope of the normalized cone resistance, m, and the normalized cone resistance at $\Psi=0$, $\kappa$, with those of various sandy soils from over the world, the relationship of m and $\kappa$ with $\lambda_{ss}$ of Busan sand was concluded to show a good agreement with the result published previously, while Busan sand had the largest $\kappa$ among the soils with similar $\lambda_{ss}$ values.

Vertical Load Transfer Mechanism of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 수직 하중전이 특성)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Jang, Hwa-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.29-39
    • /
    • 2015
  • The vertical load imposed on the bucket foundation is transferred from the soil inside the bucket to the bottom of the foundation, and also to the outer surface of the skirt. For the design of a bucket foundation installed in sand, the vertical load transfer characteristics have to be clearly identified. However, the response of bucket foundations in sand subjected to a vertical load has not been investigated. In this study, we performed two-dimensional axisymmetric finite element analyses and investigated the vertical load transfer mechanism of bucket foundation installed in sand. The end bearing capacity of bucket foundation is shown to be larger than that of the shallow foundation, whereas the frictional resistance is smaller than that for a pile. The end bearing capacity of the bucket foundation is larger than the shallow foundation because the shear stress acting on the skirt pushes down and enlarges the failure surface. The skin friction is smaller than the pile because the settlement induces horizontal movement of the soil below the tip of the foundation and reduces the normal stress acting at the bottom part of the skirt. The calculated bearing capacity of the bucket foundation is larger than the sum of end bearing capacity of shallow foundation and skin friction of pile. This is because the increment of the end bearing capacity is larger than the reduction in the skin friction.

Effects of Different UV-B Levels on Growth, Antioxidant Contents and Activities of Related Enzymes in Cucumber(Cucumis sativus L.). (UV-B 강도 변화가 오이의 생장 및 항산화 물질 함량과 관련 효소의 활성에 미치는 영향)

  • Kim, Hak-Yoon;Shin, Dong-Hyun;Kim, Kil-Ung
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.309-313
    • /
    • 2000
  • To investigate the effects of different UV-B levels on growth and biochemical defense response in plants, cucumber plants were subjected to three levels of biologically effective ultraviolet-B $(UV-B_{BE})$ radiation [daily dose: 0.03 (No), 6.40 (Low) and $11.30\;(High)\;kJ{\cdot}m^{-2}$, $UV-B_{BE}$] in the growth chambers for 3 weeks during the early growth period. Enhanced UV-B radiation drastically decreased both dry weight and leaf area of cucumber. With increasing UV-B intensity, chlorophyll content was decreased, however the level of malondialdehyde was highly increased linearly. Total contents of ascorbic acid and glutathione were tended to increase by UV-B, while the ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were significantly increased with increasing UV-B intensity in cucumber. All the enzyme activities investigated (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, guaiacol peroxidase etc.) in cucumber were increased by the UV-B enhancement. These results suggested that enhanced UV-B irradiation caused photooxidative stress in cucumber plant and resulted in significant reduction in plant growth. Biochemical protection responses might be activated to prevent the leaves from damaging effects of oxidative stress generated by UV-B irradiation.

  • PDF

Modulation of antioxidant defense system in the brackish water flea Diaphanosoma celebensis exposed to bisphenol A (비스페놀 A에 대한 기수산 물벼룩의 항산화 시스템의 변화)

  • Yoo, Jewon;Cha, Jooseon;Kim, Hyeri;Pyo, Jinwoo;Lee, Young-Mi
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Bisphenol A (BPA), a representative endocrine disrupting chemicals, has adverse effects on growth, development and reproduction in aquatic organisms. The object of this study was to investigate the modulation of antioxidant enzyme-coding genes using quantitative real time RT-PCR (qRT-PCR), enzyme activity and total protein content, to understand oxidative stress responses after exposure to BPA for 48 h in brackish water flea Diaphanosoma celebensis. The BPA ($3mg\;L^{-1}$) significantly upregulated the expression of Cu/Zn-SOD, Mn-SOD, and catalase (CAT) mRNA. Three GST isoforms (GST-kappa, GST-mu, and GST-theta) mRNA levels significantly increased at the rate of $0.12mg\;L^{-1}$ of BPA. In particular, GST-mu showed the highest expression level, indicating its key role in antioxidant response to BPA. SOD activity was induced with a concentration-dependent manner, and total protein contents was reduced. These findings indicate that BPA can induce oxidative stress in this species, and these antioxidants may be involved in cellular protection against BPA exposure. This study will provide a better understanding of molecular mode of action of BPA toxicity in aquatic organisms.

OmpR Is Essential for Growth and Expression of Virulence-related Genes in the Fish Pathogen Edwardsiella piscicida (어류 병원체 Edwardsiella piscicida의 OmpR은 생육과 병원성과 관련된 유전자의 발현에 필수적)

  • Ray, Durga;Kim, Yeon Ha;Choe, unjeong;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.28-36
    • /
    • 2021
  • Edwardsiella piscicida is a significant cause of hemorrhagic septicemia in fish and gastrointestinal infections in humans. Survival bacteria require specialized mechanisms to adapt to environmental fluctuations. Hence, to understand the mechanism through which E. piscicida senses and responds to environmental osmolarity changes, we determined the protein expression profile and physiological properties under various salinity conditions in this study. The OmpR protein is a part of the Env-ZOmpR two-component system that has been implicated in sensing salt stress in bacteria. However, the physiological role played by this protein in E. piscicida remains to be elucidated. Therefore, in this work, the function of the OmpR protein in response to salt stress was investigated. Phenotypic analysis revealed that, in the mutant, three of the biochemical phenotypes were different from the wild type, including, citrate utilization, hydrogen sulfide, and indole production. Introduction of the plasmid containing the entire ompR gene to the mutant strain returned it to its parental phenotype. The retarded growth rate also partially recovered. Furthermore, in our studies, OmpR was not found to be related to cell motility. Taken together, our results from the mutational analysis, the growth assay, MALDI-TOF MS, qRT-PCR, and the phenotype studies suggest that the OmpR of E. piscicida is implicated in osmoregulation, growth, expression of porins (ETAE_1826), virulence-related genes (EseC, EseD and EvpC), and certain genes of unknown function (ETAE_1540 and ETAE_2706).

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp (적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향)

  • Lee, Sun Jeoung;Han, Saerom;Yoon, Tae Kyung;Han, Seung Hyun;Jung, Yejee;Yun, Soon Jin;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.522-529
    • /
    • 2013
  • Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.

A study on excavator front support parts to minimize springback defects (굴삭기 Front Support 부품 뒤틀림 결함 최소화 방안 도출)

  • Jeon, Yong-Jun;Heo, Young-Moo;Lee, Ha-Sung;Kim, Dong-Earn
    • Design & Manufacturing
    • /
    • v.12 no.2
    • /
    • pp.40-45
    • /
    • 2018
  • Recently, in construction equipment machinery production, development has focused on environmentally-friendly functions to improve existing production capacity. For excavators as well, emphasis has been placed on response to environmental regulations, miniaturization, and noise reduction, while technology is being developed considering cost reduction and safety.Accordingly, the front support, an inner reinforcement part of the excavator, as well as high-strength steel plates to improve safety and reduce weight, are being applied.However, in the case of high-strength materials, Springback occurs in the final formed part due to high residual stress during product forming. Derivation of a forming or product shaping process to reduce springback is needed. Accordingly, regarding the front support, an inner reinforcement part of the excavator, this study derived a method to improve springback and secure shape stiffness through analysis of the springback occurrence rate and springback causes through a forming analysis.As for the results of analyzing the springback occurrence rate of existing products through forming analysis, springback of -22.6 mm < z < 27.35 mm occurred on the z-axis, and it was confirmed that springback occurred due to the stiffness reinforcing bead of the upper and middle parts of the product.To control product residual stress and springback, we confirmed a tendency of springback reduction through local pre-cutting and stiffness reinforcement bead relocation.In the local pre-cutting model, springback was slightly reduced by 5.3% compared with the existing model, an insignificant reduction effect. In the stiffness reinforcement bead relocation model, when an X-shaped stiffness reinforcement bead was added to each corner portion of the product, springback was reduced by at least 80%.The X-shaped bead addition model was selected as the springback reduction model, and the level of stiffness compared to the existing model was confirmed through a structural analysis.The X-shaped bead additional model showed a stress springback of 90% and springback reduction of 7.4% compared with the existing model, indicating that springback and stiffness will be reinforced.

A Study on Psychological Responses and Evaluation of Degree of Satisfaction for Drivers to Traffic Informations Using Driving Simulator (차량시뮬레이터를 이용한 교통정보제공 유형에 따른 이용자 심리적 반응 및 만족도 평가에 관한 연구)

  • Hong, Ji Yeon;Lim, Joon Bum;Song, Byung Kun;Lee, Soo Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.227-235
    • /
    • 2011
  • At present, the characteristics of drivers are not properly considered when informations are provided via VMS even though the Variable Message Signs(VMS) are one of the key information provision medias on the roads. In this study, the driver's psychological response(stress index) was evaluated using a driving simulator for the position of the VMS provided, the contents of the VMS provided, the size of characters on VMS, and types of VMS expression. It was appeared that the stress is the least when the position of the VMS provided 1.5km proceeded from exit, the contents of the VMS provided are time information and types of VMS expression are character form respectively and the size of characters on VMS is appeared not important. In addition, the change of the users' satisfaction level was measured when increasing the numbers of VMS on unit distance and the size of characters. The size of character was almost not effected in similar to the result of stress index and the satisfaction level increased when increasing the number of VMS on the unit distance. The results of this research can be utilized as basic data for the ITS system design and operation stages.

Assessment of water supply reliability in the Geum River Basin using univariate climate response functions: a case study for changing instreamflow managements (단변량 기후반응함수를 이용한 금강수계 이수안전도 평가: 하천유지유량 관리 변화를 고려한 사례연구)

  • Kim, Daeha;Choi, Si Jung;Jang, Su Hyung;Kang, Dae Hu
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.993-1003
    • /
    • 2023
  • Due to the increasing greenhouse gas emissions, the global mean temperature has risen by 1.1℃ compared to pre-industrial levels, and significant changes are expected in functioning of water supply systems. In this study, we assessed impacts of climate change and instreamflow management on water supply reliability in the Geum River basin, Korea. We proposed univariate climate response functions, where mean precipitation and potential evaporation were coupled as an explanatory variable, to assess impacts of climate stress on multiple water supply reliabilities. To this end, natural streamflows were generated in the 19 sub-basins with the conceptual GR6J model. Then, the simulated streamflows were input into the Water Evaluation And Planning (WEAP) model. The dynamic optimization by WEAP allowed us to assess water supply reliability against the 2020 water demand projections. Results showed that when minimizing the water shortage of the entire river basin under the 1991-2020 climate, water supply reliability was lowest in the Bocheongcheon among the sub-basins. In a scenario where the priority of instreamflow maintenance is adjusted to be the same as municipal and industrial water use, water supply reliability in the Bocheongcheon, Chogang, and Nonsancheon sub-basins significantly decreased. The stress tests with 325 sets of climate perturbations showed that water supply reliability in the three sub-basins considerably decreased under all the climate stresses, while the sub-basins connected to large infrastructures did not change significantly. When using the 2021-2050 climate projections with the stress test results, water supply reliability in the Geum River basin was expected to generally improve, but if the priority of instreamflow maintenance is increased, water shortage is expected to worsen in geographically isolated sub-basins. Here, we suggest that the climate response function can be established by a single explanatory variable to assess climate change impacts of many sub-basin's performance simultaneously.