DOI QR코드

DOI QR Code

Growth and Physiological Characteristics of Pinus densiflora Seedlings in Response to Open-field Experimental Warming using the Infrared Lamp

적외선등을 이용한 실외 실험적 온난화 처리가 소나무 묘목의 생장과 생리적 특성에 미치는 영향

  • Lee, Sun Jeoung (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Han, Saerom (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Yoon, Tae Kyung (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Han, Seung Hyun (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Jung, Yejee (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Yun, Soon Jin (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University)
  • 이선정 (고려대학교 환경생태공학과) ;
  • 한새롬 (고려대학교 환경생태공학과) ;
  • 윤태경 (고려대학교 환경생태공학과) ;
  • 한승현 (고려대학교 환경생태공학과) ;
  • 정예지 (고려대학교 환경생태공학과) ;
  • 윤순진 (고려대학교 환경생태공학과) ;
  • 손요환 (고려대학교 환경생태공학과)
  • Received : 2013.07.01
  • Accepted : 2013.09.23
  • Published : 2013.12.31

Abstract

Climate change will affect the physiological traits and growth of forest trees. This study was conducted to investigate the effects of an experimental warming on growth and physiological characteristics of Pinus densiflora S. et Z. seedlings. One-year-old P. densiflora seedlings were planted in control and warmed plots in April 2010. The air temperature of warmed plots was increased by $3^{\circ}C$ using infrared lamps from November 2010. We measured shoot height, root collar diameter, above and below ground biomass, chlorophyll contents and leaf nitrogen concentration from March 2011 to March 2013. Seedling height and root collar diameter showed no significant difference between warmed and control plots except for root collar diameter measured in June 2012. Seedling leaf biomass was lower in the warmed ($23.94{\pm}2.10g$) than in the control ($26.08{\pm}1.72g$) plots in 2013. Shoot to root ratio (S/R ratio) was lower in the warmed ($1.09{\pm}0.07$) than in the control ($1.31{\pm}0.10$) plots in 2013. Leaf nitrogen concentrations and chlorophyll contents were not significantly different between warmed and control plots except for leaf nitrogen concentration in 2011. Leaf C/N ratio was increased in 2012 under the warming treatment. Low growth and S/R ratio in warmed plots might be related to the higher temperature and water stress. In the future, the below-ground carbon allocation of P. densiflora might be increased by global warming due to temperature and water stress.

기후변화는 수목의 생장과 생리적 특성에 영향을 미칠 것으로 예상되고 있다. 본 연구는 인위적 온난화에 의한 소나무 묘목의 생장과 생리적 반응을 알아보기 위한 목적으로 수행되었다. 이를 위하여 2010년 4월 고려대학교 구내 묘포장에 1년생 소나무 묘목을 식재하고 당해 11월부터 적외선등을 이용하여 $3^{\circ}C$ 온도를 증가시키는 온난화 처리를 하였으며, 2011년부터 3월부터 2013년 3월까지 묘고 및 근원경, 지상부 및 지하부 생물량, 잎의 엽록소함량 및 질소 농도 등을 측정하였다. 묘고와 근원경의 경우 2012년 6월에 측정한 근원경을 제외하고 온난화 처리구와 대조구간 유의한 차이를 보이지 않았다. 그러나 2013년 묘목 개체당 잎의 생물량은 온난화 처리구($23.94{\pm}2.10g$)에서 대조구($26.08{\pm}1.72g$)보다 낮게 나타났으며, 줄기와 뿌리의 생물량 비율(S/R율)은 2013년에 온난화 처리구($1.09{\pm}0.07$)에서 대조구($1.31{\pm}0.10$)보다 낮게 나타났다. 한편 잎의 엽록소 함량 및 질소 농도는 2011년 잎의 질소 농도를 제외하고 온난화 처리와 대조구간 통계적으로 유의한 차이를 보이지 않았다. 그리고 잎의 C/N율은 2012년에 온난화 처리구에서 대조구보다 높게 나타났다. 온난화 처리에 따른 소나무 묘목의 일부 생장 및 S/R율 감소는 온도 및 수분 스트레스와 관련이 있을 것으로 추정된다. 본 연구결과 향후 온난화가 지속되면 국내 소나무는 온도 및 수분스트레스로 인해 지하부로의 탄소 분배를 확대시킬 가능성이 있는 것으로 사료된다.

Keywords

References

  1. An, Y., Wan, S., Zhou, X., Subedar, A.A., Wallace, L.L., and Luo, Y. 2005. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology 11(10): 1733-1744. https://doi.org/10.1111/j.1365-2486.2005.01030.x
  2. Apple, M.E., Lucash, M.S., Olszyk, D.M., and Tingey, D.T. 1998. Morphogenesis of Douglas-fir bud is altered at elevated temperature but not at elevated $CO_2$. Environmental and Experimental Botany 40(2): 159-172. https://doi.org/10.1016/S0098-8472(98)00031-8
  3. Arend, M., Kuster, T., Gunthardt-Goerg, M.S., Dobbertin, M., and Abrams, M. 2011. Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiology 31(3): 287-297. https://doi.org/10.1093/treephys/tpr004
  4. Barber, V.A., Juday, G.P., and Finney, B.P. 2000. Reduced growth Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668-673. https://doi.org/10.1038/35015049
  5. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., and Davison, A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany 32(2): 85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  6. Bronson, D.R., Gower, S.T., Tanner, M., and Van Herk, I. 2009. Effect of ecosystem warming on boreal black spruce bud burst and shoot growth. Global Change Biology 15(6): 1534-1543. https://doi.org/10.1111/j.1365-2486.2009.01845.x
  7. Bussotti, F., Borghini, F., Celesti, C., Leonzio, C., and Bruschi, P. 2000. Leaf morphology and macronutrients in broadleaved trees in central Italy. Trees 14(7): 361-368. https://doi.org/10.1007/s004680000056
  8. Byun, J., Lee, W., Nor, D., Kim, S., Choi, J., and Lee, Y. 2010. The relationship between tree radial growth and topographic and climate factors in red pine and oak in central regions of Korea. Journal of Korean Forest Society 99(6): 908-913 (in Korean).
  9. Cavender-Bares, J. and Bazzaz, F.A. 2000. Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees. Oecologia 124(1): 8-18. https://doi.org/10.1007/PL00008865
  10. Climate Change Information Center. 2013. SRES South Korea (10 km). http://www.climate.go.kr (2013. 09. 09).
  11. Danby, R.K. and Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13(2): 437-451. https://doi.org/10.1111/j.1365-2486.2006.01302.x
  12. De Boeck, H.J., Lemmens, C.M.H.M., Gielen, B., Bossuy, H., Malchair, S., Carnol, M., Merckx, R., Ceulemans, R., and Nujs, I. 2007. Combinaed effects of climate warming and plant diversity loss on above- and below-ground grasslang productivity. Enviromental and Experimental Botany 60(1): 95-104. https://doi.org/10.1016/j.envexpbot.2006.07.001
  13. Emmett, B.A., Beier, C., Estiarte, M., Tietema, A., Kristensen, H.L., Williams, D., Penuelas, J., Schmidt, I. and Sowerby, A. 2004. The response of soil processes to climate change: results from manipulation studies of shrublands across an environmental gradient. Ecosystems 7(6): 625-637.
  14. Euskirchen, E.S., McGuire A.D., Kicklighter, D.W., Zhuang, Q., Clein, J.S., Dargaville, R.J., Dye, D.G., Kimball, J.S., McDonald, K.C., Melillo, J.M., Romanovsky, V.E., and Smith, N.V. 2006. Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biology 12(4): 731-750. https://doi.org/10.1111/j.1365-2486.2006.01113.x
  15. Gunderson, C.A., O'Hara, K.H., Campion, C.M., Walker, A.V., and Edwards, N.T. 2010. Thermal plasticity of photosynthesis: the role of acclimation in forest responses to a warming climate. Global Change Biology 16(8): 2272-2286.
  16. Han, S., Kim, D., Kim, G., Lee, J., and Yun, C. 2012. Changes on initial growth and physiological characteristics of Larix kaempferi and Betula costata seedlings under elevated temperature. Korean Journal of Agricultural and Forest Meteorology 14(2): 63-70 (in Korean). https://doi.org/10.5532/KJAFM.2012.14.2.063
  17. Jo, W., Son, Y., Chung, H., Noh, N.J., Yoon, T.K., Han, S., Lee, S.J., Lee, S.K., Yi, K., and Jin, L. 2011. Effect of artificial warming on chlorophyll contents and net photosynthetic rate of Quercus variabilis seedlings in an open-field experiment. Journal of Korean Forest Society 100(4): 733-737 (in Korean).
  18. Kellomaki, S. and Wang, K.Y. 2001. Growth and resource use of birch seedlings under elevated carbon dioxide and temperature. Annals of Botany 87(5): 669-682. https://doi.org/10.1006/anbo.2001.1393
  19. Kim, C. 2008. Soil $CO_2$ efflux in clear-cut and uncut red pine (Pinus densiflora S. et Z.) stands in Korea. Forest Ecology and Management 255(8-9): 3318-3321. https://doi.org/10.1016/j.foreco.2008.02.012
  20. Kim, C., Son, Y., Lee, W.K., Jeong, J., and Noh, N.J. 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257(5): 1420-1426. https://doi.org/10.1016/j.foreco.2008.12.015
  21. Kimball, B.A., Conley, M.M., Wang, S., Lin, X., Luo, C., Morgan, J., and Smith, D. 2008. Infrared heater arrays for warming ecosystem field plots. Global Change Biology 14(2): 309-320.
  22. Kjellstrom, E. 2004. Recent and Future Signatures of Climate Change in Europe. Ambio 33(4): 193-198.
  23. Korea Forest Research Institute. 2012. The forest and human in climate change. Korea Forest Research Institute. Seoul. pp. 360 (in Korean).
  24. Lee, K.J. 1997. Tree physiology. Seoul National University Press. Seoul. pp 504 (in Korean).
  25. Lee, S.W., Kim, J.W., Kim, W.K., and Jo, M.S. 2009. The techniques and handling for major seedlings in Korea. Korea Forest Research Institute. Seoul. pp. 51 (in Korean).
  26. Lee, S.J., Han, S., Yoon, T.K., Chung, H., Noh, N.J., Jo, W., Park, C. Ko, S., Han, S.H., and Son, Y. 2012. Effects of experimental warming on growth of Quercus variabilis seedlings. Journal of Korean Forest Society 101(4): 722-728 (in Korean).
  27. Lee, S.J., Han, S., Yoon, T.K., Jo, W., Han, S.H., Jung, Y., and Son, Y. 2013. Changes in chlorophyll contents and net photosynthesis rate of 3-year-old Quercus variabilis seedlings by experimental warming. Journal of Korean Forest Society 102(1): 156-160 (in Korean). https://doi.org/10.14578/jkfs.2013.102.1.156
  28. Lincoln, T. and Eduardo, Z (translation of Jun, B.O.). 2010. Plant physiology. Life Science. Seoul. pp. 751 (in Korean).
  29. Noh, N.J., Son, Y., Jo, W., Yi, K., Park, C.W., and Han, S. 2012. Preliminary study on estimating fine root growth in a natural Pinus densiflora forest using a minirhizotron technique. Forest Science and Technology 8(1): 47-50. https://doi.org/10.1080/21580103.2012.658233
  30. Noh, N.J., Son, Y., Lee, S.K., Yoon, T.K., Seo, K.W., Kim, C., Lee, W.K., Bae, S.W., and Hwang, J. 2010a. Influence of stand density on soil $CO_2$ efflux for a Pinus densiflora foreat in Korea. Journal of Plant Research 123(4): 411-419. https://doi.org/10.1007/s10265-010-0331-8
  31. Noh, N.J., Son, Y., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Kim, R.H., Son, Y.M., and Lee, K.H. 2010b. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stand in Korea. Science China Life Science 53(7): 822-830.
  32. Olszyk, D., Johnson, M.G., Tingey, D.T., Rygiewicz, R.T., Wise, C., VanEss, E., Benson, A., Storm, M.J., and King, R. 2003. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated $CO_2$ and temperature for 4 years. Canadian Journal of Forest Research 33(2): 269-278. https://doi.org/10.1139/x02-186
  33. Olszyk, D., Wise, C., VanEss, E., and Tingey, D. 1998. Elevated temperature but not elevated $CO_2$ affects long-term patterns of stem diameter and height of Douglas-fir seedlings. Canadian Journal of Forest Research 28(7): 1046-1054. https://doi.org/10.1139/x98-114
  34. Rustad, L.E., Campbell, J.L., Marion, G.M., Norby, R.J., Mitchell, M.J., Hartley, A.E., Cornelissen, J.H.C., Gurevitch, J., and GCTE-NEWS. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4): 543-562. https://doi.org/10.1007/s004420000544
  35. Reich, P.B. and Oleksyn, J. 2008. Climate warming will reduce growth and survival of Scots pine except in the far north. Ecology Letters 11(6): 588-597. https://doi.org/10.1111/j.1461-0248.2008.01172.x
  36. Sardans, J., Penuelas, J., Marc, E., and Patricia, P. 2008. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Global Change Biology 14(10): 2304-2316. https://doi.org/10.1111/j.1365-2486.2008.01656.x
  37. SAS Institute Inc., 2009. SAS/STAT(R) 9.2 user's guide. SAS Institute Inc., Cary.
  38. Slaney, M., Wallin, G., Medhurst, J., and Linder, S. 2007. Impact of elevated carbon dioxide concentration and temperature on bud burst and shoot growth of boreal Norway spruce. Tree Physiology 27(2): 301-312. https://doi.org/10.1093/treephys/27.2.301
  39. Van Cleve, K., Oechel, W.C., and Hom, J.L. 1990. Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Canadian Journal of Forest Research 20(9): 1530-1535. https://doi.org/10.1139/x90-203
  40. Volder, A., Edwards, E.J., Evans, J.R., Robertson, B.C., Schortemeyer, M., and Gifford, R.M. 2004. Does greater nighttime, rather than constant, warming alter growth of managed pasture under ambient and elevated atmospheric $CO_2$? New Phytologist 162(2): 397-411. https://doi.org/10.1111/j.1469-8137.2004.01025.x
  41. Wan, S., Hui, D., Wallace, L., and Luo, Y. 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles 19: GB2014.
  42. Wang, J., Duan, B., and Zhang, Y. 2012. Effects of experimental warming on growth biomass allocation, and needle chemistry of Abies faxoniana in even-aged monospecific stands. Plant Ecology 213(1): 47-55. https://doi.org/10.1007/s11258-011-0005-1
  43. Wu, Z., Dijkstra, P., Koch, G.W., Penuelas, J., and Hungate, B.A. 2011. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Global Change Biology 17(2): 927-942. https://doi.org/10.1111/j.1365-2486.2010.02302.x
  44. Xu, Z.Z. and Zhou, G.S. 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224(5): 1080-1090. https://doi.org/10.1007/s00425-006-0281-5
  45. Yi, K., Park, C., Ryu, S., Lee, K., Yi, M., Kim, C., Park, G., Kim, R., and Son, Y. 2013. Simulating the soil carbon dynamic of Pinus densiflora forests in central Korea. Scandinavian Journal of Froest Research 28(3): 241-256. https://doi.org/10.1080/02827581.2012.735698
  46. Yin, H.J., Liu, Q., and Lai, T. 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23(2): 459-469. https://doi.org/10.1007/s11284-007-0404-x
  47. Yoon, T.K., Chung, H., Kim, R., Noh, N.J., Seo, K.W., Lee, S.K., Jo, W., and Son, Y. 2011. Coarse woody debris mass dynamics in temperate natural forests of Mt. Jumbong, Korea. Journal of Ecology and Field Biology 34(1): 115-125. https://doi.org/10.5141/JEFB.2011.014
  48. Zhao, C. and Liu, Q. 2009. Growth and photosynthetic responses of two coniferous species to experimental warming and nitrogen fertilization. Canadian Journal of Forest Research 39(1): 1-11. https://doi.org/10.1139/X08-152
  49. Zhou, X., Liu, X., Wallace, L.L., and Luo, Y. 2007. Photosynthetic and respiratory acclimation to experimental warming for four species in a tallgrass prairie ecosystem. Journal of Integrative Plant Biology 49(3): 270-281. https://doi.org/10.1111/j.1744-7909.2007.00374.x

Cited by

  1. Seed Germination and Seedling Survival Rate of Pinus densiflora and Abies holophylla in Open-field Experimental Warming Using the Infrared Lamp vol.103, pp.2, 2014, https://doi.org/10.14578/jkfs.2014.103.2.203
  2. Effects of experimental warming on soil respiration and biomass in Quercus variabilis Blume and Pinus densiflora Sieb. et Zucc. seedlings vol.73, pp.2, 2016, https://doi.org/10.1007/s13595-016-0547-4
  3. Effects of Warming and Precipitation Manipulation on Fine Root Dynamics of Pinus densiflora Sieb. et Zucc. Seedlings vol.9, pp.1, 2017, https://doi.org/10.3390/f9010014
  4. 실외 실험적 온난화 및 강수 처리에 따른 소나무와 낙엽송 유묘의 초기 생장 특성 vol.109, pp.1, 2020, https://doi.org/10.14578/jkfs.2020.109.1.31