• Title/Summary/Keyword: environmental release

Search Result 1,012, Processing Time 0.029 seconds

Daily Rhythm of Pheromone Production and Release by Females of the Black Pine Base Scale, Matsucoccus thunbergianae (Homoptera: Coccoidea: Margarodidae) (일주기와 관련된 솔껍질깍지벌레 암컷성충의 성훼로몬 체내생산 및 발산)

  • ;Law
    • Korean journal of applied entomology
    • /
    • v.30 no.1
    • /
    • pp.94-99
    • /
    • 1991
  • The daily rhythm of sex pheromone production and release by females of the black pine base scale, Matsucoccus thunbergianae Miller and Park, was demonstrated by studying the amounts of pheromone possessed and released by females, periodically after emergence. Cycles of both pheromone production and release had daily peaks between 8 a.m. and 2 p.m., and has marked decreases after 4 p.m. It appeared that the amounts of pheromone gradually decreased three days after the emergence. Significance in synchronization of the daily rhythm of female pheromone release and activities of males and females with reference to reproductive success in this species is discussed.

  • PDF

An Application of Probabilistic Environmental Risk Assessment for An Incineration Facility (소각설비에 대한 확률론적 환경위험성 평가 적용)

  • Kim, Young Jae;Jang, E.J.;Ahn, K.S.
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • A wide spectrum of risk assessments including qualitative and quantitative approaches and the analyses of its consequence were performed for an environmentally sensitive object such as incineration facility. To find out the major risk concerns, HAZOP(Hazard and Operability) were performed. Then, the frequency of hazardous gas release scenarios was calculated. Finally consequence analyses were performed for the gas release scenarios. On the basis of analyses through evaluation, a more innovative way for making a better control system or the enhancement of operation procedure was given. The results from these analyses would act as a substantial benefits for the incineration facility operator, and giving some measured information for the neighbors and the people involved.

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

Tributyltin Induces Apoptosis in R2C via Oxidative Stress and Caspase-3 Activation by Disturbance of $Ca^{2+}$

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.303-307
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying apoptosis induced by TBT in R2C cell. Effects of TBT on intracellular $Ca^{2+}$ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular $Ca^{2+}$ level in a time-dependent manner. The rise in intracellular $Ca^{2+}$ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular $Ca^{2+}$ chelator, indicating the important role of $Ca^{2+}$ in R2C during these early intracellular events. In addition, Z-DEVD FMB, a caspase -3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular $Ca^{2+}$ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.

The Relationship of Specific Phosphorus Release / Uptake Rate and Specific Oxygen Uptake Rate considering the Sludge Retention Time in the A/O Process (A/O공정에서 슬러지체류시간에 따른 인 방출 및 섭취속도와 비산소소비율과의 상관관계)

  • Choi, Jung Soo;Lee, Kwang Hyun;Joo, Hyun Jong;Kim, Sung Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.468-473
    • /
    • 2010
  • The purpose of this study is to derive the correlation between the Specific Phosphorus Release Rate (SPRR), Specific Phosphorus Uptake Rate (SPUR) and Specific Oxygen Uptake Rate (SOUR) at various Sludge Retention Time (SRT) condition in the A/O process. The laboratory scale reactor was operated on various SRT (10 day, 20 day, 30 day, 40 day). In this study, the SPRR, SPUR and SOUR tended to decrease with the SRT increase. Empirical equations was be obtained $y=4.54E-006x^2+0.0007x-0.0315$, $R^2=0.925$ (SOUR vs. SPRR) and $y=3.22E-006x^2+0.0004x-0.0173$, $R^2=0.928$ (SOUR vs. SPUR) from the relationship between SRT, SPRR and SPUR and SOUR. Therefore, the anaerobic tank design based on the research result such as SPRR, SPUR of a phosphorus design and SOUR would be possible.

Effects of Sediments on the Growth of Algae at Chusori Area in Daechung Reservoir (대청호 추소리 수역의 퇴적물이 조류 성장에 미치는 영향)

  • Oh, Kyoung-Hee;Kim, Yong-Jun;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.533-542
    • /
    • 2015
  • In order to investigate the effect of internal loading from sediment on algal blooming at Chusori area in Daechung Reservoir, the amount and contamination level of sediment and the release rate of total phosphorus were analyzed. The sedimentary layer was consisted with two layers, and the average depth of upper and lower ones were 0.35 and 1.44 m, respectively. The fraction of inorganic phosphorus in the sediment was higher than that of organic phosphorus, and the fractions of phosphorus which responsible for internal loading were very high as in the range of 72.7 and 80.2% of inorganic phosphorus. The C/N ratio of sediment taken with core sampler indicated the organic compounds are originated from settled algae from water body. The average release rate of total phosphorus from sediment was $6.74({\pm}0.50)mg/m^2/day$. These results indicated that the internal loading from sediment contributes the excessive algal growth at Churosi area, and the countermeasures to improve the quality of sediments are required to manage algal blooming in Daechung Reservoir.

Determination of Atmospheric Perfluorocarbon Background Concentrations of fL/L Range at the Western Coastal Area of Korea

  • Kim, Hye-Kyeong;Yea, Sun-Kyung;Ro, Chul-Un;Lee, Chong-Bum;Jang, Meong-Do;Lee, Gang-Woong;Yoo, Eun-Jin;Han, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.301-308
    • /
    • 2002
  • As part of perfluorocarbon (PFC) tracer release experiment conducted at the western coastal area of Korea in February 2001, the background concentration level of perfluorocarbons (PFCs) in the atmosphere was determined by gas chromatography with electron capture detector. Prior to the PFC tracer release experiment in the field, air samples were collected using active samplers and the background concentrations of PFCs were determined. The concentrations of perfluoromethylcyclohexane ($C_7F_{14}$, PMCH) in the western coastal area of Korea were in the range of 5.8-8.7 fL/L. The mean concentration of the PMCH in the region exhibited no significant spatial and temporal variations. This concentration level is somewhat higher and has larger standard deviation than those of studies previously conducted in USA and Europe on the background concentration levels of PFCs. Because the background concentration of PMCH in Korea is still very low and consistent temporally and spatially, the PMCH tracer can be used suitably for the studies of long-range atmospheric transport.

Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea (의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향)

  • Youn, Seok Jea;Kim, Hun Nyun;Kim, Yong Jin;Im, Jong Kwon;Lee, Eun Jeong;Yu, Soon Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

Identification of Potential Environmental Impacts among Renewable Energy Technologies Promising to Minimize Global Warming (지구온난화 최소화를 위한 신재생 에너지들의 잠재환경영향)

  • Kim, Yong-Bum;Chung, Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.1
    • /
    • pp.67-79
    • /
    • 2008
  • Global warming, which is one of the most serious challenges, has been the subject of intense debate and concern for many scientists, policy-makers, and citizens for at least the past decade. To protect the health and economic well-being of current and future generations, we must reduce our emissions like carbon dioxide. Alternatives to achieve an energy future without serious global warming are to change to clean and renewable sources of energy like the wind, the sun lights, rivers, the biomass, hydrogen, and oceans. To identify some of the key and new environmental impacts associated with renewable energy and hydrogen energy, we set up the new conceptual methodology. Specifically, new identified environmental and health impacts are related with the usage of hydrogen energy. When comparing with fossil fuel, the renewable energies can reduce the release of carbon dioxide when they are used except hydrogen produced from fossil fuel. However, all renewable energy technologies are not appropriate to all applications or locations. Our results suggest that all of alternatives to replace fossil fuel can release the several global and local impacts although they seems to be smaller than the impacts from fossil fuel. Therefore, the quantitative and detail analysis to assess environmental impacts of the alternative energies might be useful to make our decision for the future energy against the global warming.