• Title/Summary/Keyword: environmental dynamics

Search Result 1,355, Processing Time 0.026 seconds

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Irregular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(불규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.253-262
    • /
    • 2018
  • Oscillating Water Column (OWC) Wave Energy Converters (WEC) harness electricity through a Power-Take-Off (PTO) system from the induced-airflow by seawater oscillating inside a chamber. In general, an air chamber with a relatively small cross-sectional area is required compared to seawater chamber to obtain high-velocity air in the PTO system, and in order to simulate an accurate air flow rate in the air chamber, a three-dimensional study is required. In this study, the dynamic response of OWC-WEC that is equipped with the channel of seawater exchange for the case of irregular waves has been numerically studied. The open source CFD software, OLAFLOW for the simulation of wave dynamics to the openFOAM and FOAM-extend communities, was used to simulate the interaction between the device and irregular waves. Based on the numerical simulation results, we discussed the fluctuation characteristics of three dimensional air flow in the air-chamber, wave deformation around the structure and the seawater flow inside the channel of seawater exchange. The numerical results the maximum air flow velocity in the air-chamber increases as the Ursell value of the significant wave increases, and the velocity of airflow flowing out from the inside of air chamber to the outside is greater than the speed of flowing into the air chamber from the outside.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

The Return of Great Power Competition to the Arctic (북극해 일대에서 본격화되기 시작한 강대국 경쟁)

  • Hong, Kyu-dok;Song, Seongjong;Kwon, Tae-hwan;JUNG, Jaeho
    • Maritime Security
    • /
    • v.2 no.1
    • /
    • pp.151-184
    • /
    • 2021
  • Global warming due to climate change is one of the biggest challenges in the 21st century. Global warming is not only a disaster that threatens the global ecosystem but also an opportunity to reduce logistics costs and develop mineral resources by commercializing Arctic routes. The Arctic paradox, in which ecological and environmental threats and new economic opportunities coexist, is expected to have a profound impact on the global environment. As the glaciers disappear, routes through the Arctic Ocean without passing through the Suez and Panama Canals emerged as the 'third route.' This can reduce the distance of existing routes by 30%. Global warming has also brought about changes in the geopolitical paradigm. As Arctic ice begins to melt, the Arctic is no longer a 'constant' but is emerging as the largest geopolitical 'variable' in the 21st century. Accordingly, the Arctic, which was recognized as a 'space of peace and cooperation' in the post-Cold War era, is now facing a new strategic environment in which military and security aspects are emphasized. After the Cold War, the Arctic used to be a place for cooperation centered on environmental protection, but it is once again changing into a stage of competition and confrontation between superpowers, heralding 'Cold War 2.0.' The purpose of this study is to evaluate the strategic value of the Arctic Ocean from geopolitical and geoeconomic perspectives and derive strategic implications by analyzing the dynamics of the New Cold War taking place in the Arctic region.

  • PDF

Spatial Point Pattern Analysis of Riparian Tree Distribution After the 2020 Summer Extreme Flood in the Seomjin River (2020년 여름 섬진강 대홍수 이후 하천 수목 분포에 대한 공간 점 패턴 분석)

  • Lee, Keonhak;Cho, Eunsuk;Cho, Jonghun;Lee, Cheolho;Kim, Hwirae;Baek, Donghae;Kim, Won;Cho, Kang-Hyun;Kim, Daehyun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • The 2020 summer extreme flood severely disturbed the riparian ecosystem of the Seomjin River. Some trees were killed by the flood impact, whereas others have recovered through epicormic regeneration after the disturbance. At the same time, several tree individuals newly germinated. This research aimed to explain the recovery of the riparian ecosystem by spatial proximity between each tree individual of different characteristics, such as "dead", "recovered", and "newly germinated". A spatial point pattern analysis based on K and g-functions revealed that the newly germinated trees and the existing trees were distributed in the spatially clumping patterns. However, further detailed analysis revealed that the new trees were statistically less attracted to the recovered trees than the dead trees, implying competitive interactions hidden in the facilitative interactions. Habitat amelioration by the existing trees positively affected the growth of the new trees, while "living" existing trees were competing with the new trees for resources. This research is expected to provide new knowledge in this era of rapid climate change, which likely induces stronger and more frequent natural disturbance than before. Environmental factors have been widely used for ecosystem modeling, but species interactions, represented by the relative spatial distribution of plant individuals, are also valuable factors explaining ecosystem dynamics.

Use of Digital Educational Resources in the Training of Future Specialists in the EU Countries

  • Plakhotnik, Olga;Zlatnikov, Valentyn;Matviienko, Olena;Bezliudnyi, Oleksandr;Havrylenko, Anna;Yashchuk, Olena;Andrusyk, Pavlo
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.17-24
    • /
    • 2022
  • The article proves that the main goal of informatization of higher education institutions in the EU countries is to improve the quality of education of future specialists by introducing digital educational resources into the education process. The main tasks of informatization of education are defined. Digital educational resources are interpreted as a set of data in digital form that is applicable for use in the learning process; it is an information source containing graphic, text, digital, speech, music, video, photo and other information aimed at implementing the goals and objectives of modern education; educational resources on the Internet, electronic textbooks, educational programs, electronic libraries, etc. The creation of digital educational resources is defined as one of the main directions of informatization of all forms and levels of Education. Types of digital educational resources by educational functions are considered. The factors that determine the effectiveness of using digital educational resources in the educational process are identified. The use of digital educational resources in the training of future specialists in the EU countries is considered in detail. European countries note that digital educational resources in professional use allow you to implement a fundamentally new approach to teaching and education, which is based on broad communication, free exchange of opinions, ideas, information of participants in a joint project, on a completely natural desire to learn new things, expand their horizons; is based on real research methods (scientific or creative laboratories), allowing you to learn the laws of nature, the basics of techniques, technology, social phenomena in their dynamics, in the process of solving vital problems, features of various types of creativity in the process of joint activities of a group of participants; promotes the acquisition by teachers of various related skills that can be very useful in their professional activities, including the skills of using computer equipment and various digital technologies.

Analysis of Regional Implementation Conditions and Industrial Strategies for Carbon Neutrality in China (중국 탄소중립 지역별 이행여건 및 산업전략 분석)

  • Yu-jeong Jeon;Su-han Kim
    • Analyses & Alternatives
    • /
    • v.7 no.2
    • /
    • pp.179-207
    • /
    • 2023
  • Carbon neutrality, the international community's practical challenge in response to climate change, is becoming a key industrial strategy for the future development of nations. Despite concerns that China, as an economic powerhouse in the G2, may face challenges leading global climate change efforts due to its high-carbon-emitting industrial structure, it is leveraging carbon neutrality to enhance its industrial competitiveness. The Chinese government has formulated national policies for achieving carbon neutrality and detailed sector-specific plans to implement them. In particular, it aims to leverage carbon neutrality industrial strategies as a lever for adjusting the domestic industrial structure and fostering new industries, at the same time responding to international climate norms and external pressures. However, the effectiveness of carbon-neutral industrial strategies is expected to vary based on regional conditions such as economic and industrial levels. This article analyzes the regional conditions for implementing carbon neutrality in China, as well as the contents and characteristics of major industrial policies. Due to differing levels of economic development and industrial structures, significant variations in carbon emissions, size, emission sources, and efficiency are inevitable across regions. These disparities introduce diverse initial conditions and endogenous factors in pursuing carbon-neutral goals, limiting the direction and implementation of carbon-neutral industrial strategies favoring certain regions. In particular, the extent of policy autonomy granted to local governments regarding carbon neutrality implementation will influence the regional dynamics of central-local environmental governance. Consequently, it is crucial to emphasize regional monitoring alongside comprehensive national research to accurately navigate the path towards carbon neutrality in China. In summary, the article underscores the importance of understanding regional variations in economic development, industrial structure, and policy autonomy for successful carbon neutrality implementation in China. It highlights the need for regional monitoring and comprehensive national research to determine a more precise direction for achieving carbon neutrality.

Study of the Mitigation of Algae in Lake Uiam according to the Operation of the Chuncheon Dam and the Soyang Dam (춘천댐 및 소양강댐 운영에 따른 의암호 조류 저감 연구)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • In this study, the characteristics of algae mitigation according to dam operation were quantitatively analyzed for Uiam Lake, where the Chuncheon Dam is located upstream of the main stream, Uiam Dam is located downstream, and Soyang Dam is located in the tributary stream. Nine dam operation scenarios were applied to the event of the summer of 2018 (at that time an algae alert occurred) using the EFDC model, which is capable of calculating three-dimensional hydrodynamics and water quality levels such as those associated with chlorophyll-a. The dam operation scenarios were set to generate a flushing effect via discharges in the form of pulse waves from the upstream dams and by lowering the water level at the downstream dam. At Uiam Lake, the flushing effect was different depending on the operation of the dam, and the amount of algae reduction at each point was different owing to topographic characteristics and the different base water temperatures from BukHan River and Soyang River. With regard to a point located on the left bank, it was predicted that the peak level of chlorophyll-a would be reduced by approximately 50 % or more upon pulsed discharge at 50 m3/s for three days at Soyang Dam. However, for the right bank, the amount of discharge from Soyang Dam had little effect on algae mitigation. Therefore, an appropriate dam operation could be effective for algae mitigation at specific points in the water body where large dams exist upstream and downstream, such as at Uiam Lake, in an emergency situation in which algal blooms rapidly.

Uncertainty Estimation of Single-Channel Temperature Estimation Algorithm for Atmospheric Conditions in the Seas around the Korean Peninsula (한반도 주변해역 대기환경에 대한 싱글채널 온도추정 알고리즘의 불확도 추정)

  • Jong Hyuk Lee;Kyung Woong Kang;Seungil Baek;Wonkook Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.355-361
    • /
    • 2023
  • Temperature of the Earth's surface is a crucial physical variable in understanding weather and atmospheric dynamics and in coping with extreme heat events that have a great impact on living organismsincluding humans. Thermalsensors on satellites have been a useful meansfor acquiring surface temperature information for wide areas on the globe, and thus characterization of its estimation uncertainty is of central importance for the utilization of the data. Among various factors that affect the estimation, the uncertainty caused by the algorithm itself has not been tested for the atmospheric environment of Korean vicinity. Thisstudy derivesthe uncertainty of the single-channel algorithm under the local atmospheric and oceanic conditions by using reanalysis data and buoy temperature data collected around Korea. Atmospheric profiles were retrieved from two types of reanalysis data, the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis of the global climate and weather (ERA5) and Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) to investigate the effect of reanalysis data. MODerate resolution atmospheric TRANsmission (MODTRAN) was used as a radiative transfer code for simulating top of atmosphere radiance and the atmospheric correction for the temperature estimation. Water temperatures used for MODTRAN simulations and uncertainty estimation for the single-channel algorithm were obtained from marine weather buoyslocated in seas around the Korean Peninsula. Experiment results showed that the uncertainty of the algorithm varies by the water vapor contents in the atmosphere and is around 0.35K in the driest atmosphere and 0.46K in overall, regardless of the reanalysis data type. The uncertainty increased roughly in a linear manner as total precipitable water increased.

A Conceptual Approach for the Effects of COVID-19 on Digital Transformation

  • Fu, Jia;Kim, Injai
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.211-227
    • /
    • 2023
  • Purpose In the contemporary landscape, marked by the enduring impact of COVID-19 and the recent disruptions stemming from the conflict in Ukraine, the purpose of this study is to navigate the era characterized by pervasive risk and uncertainty. Specifically, the study aims to dissect the impact of the COVID-19 outbreak on digital transformation, exploring the factors influencing this process and considering the multifaceted dynamics at play. The focus extends to the post-COVID-19 landscape, scrutinizing the implications and meanings of digital transformation both before and after the pandemic. Additionally, the study delves into future digital trends, with particular attention to climate and environmental issues, emphasizing corporate responsibilities in averting crises similar to COVID-19. The overarching goal is to provide a holistic perspective, shedding light on both positive and negative facets of digital transformation, and advocating for regulatory enhancements and legal frameworks conducive to a balanced and resilient digital future. Design/methodology/approach This study employs a comprehensive approach to analyze the impact of the COVID-19 outbreak on digital transformation. It considers various facets, such as smart devices reshaping daily routines, transformative changes in corporate ecosystems, and the adaptation of government institutions to the digital era within the broader context of the Fourth Industrial Revolution. The analysis extends to the post-COVID-19 landscape, examining the implications and meanings of digital transformation. Future digital trends, especially those related to climate and environmental issues, are prognosticated. The methodology involves a proactive exploration of challenges associated with digital transformation, aiming to advocate for regulatory enhancements and legal frameworks that contribute to a balanced and resilient digital future. Findings The findings of this study reveal that the digital economy has gained momentum, accelerated by the proliferation of non-face-to-face industries in response to social distancing imperatives during the COVID-19 pandemic. Digital transformation, both preceding and succeeding the onset of the pandemic, has precipitated noteworthy shifts in various aspects of daily life. However, challenges persist, and the study highlights factors that either bolster or hinder the transformative process. In the post-COVID-19 era, corporate responsibilities in averting crises, particularly those resembling the pandemic, take center stage. The study emphasizes the need for a holistic perspective, acknowledging both positive and negative facets of digital transformation. Additionally, it calls for proactive measures, including regulatory enhancements and legal frameworks, to ensure a balanced and resilient digital future.

The study of CFD Modelling and numerical analysis for MSW in MBT system (생활폐기물 전처리시스템(MBT)의 동역학적 수치해석 및 모델링에 대한 연구)

  • Lee, Keon joo;Cho, Min tae;Na, Kyung Deok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2010
  • In this study, the model of the indirect wind suction waste sorting machine for characteristics of the screening of waste was studied using computational fluid dynamics and the drag coefficient for the model and the suction wind speed were obtained. The wind separator are developing by installing a cyclone air outlet to the suction blower impeller waste is selective in a way that does not pass the features and characteristics of the inlet pipe of the pressure loss and separation efficiency can have a significant impact on. Using Wind separator for selection of waste in the waste prior research on the aerodynamic properties are essential. For plastic cases, it is reasonable to take the drag coefficient between 0.8 and 1.0, and for cans, compression depending on whether the cans, the drag coefficient is in the range from 0.2 to 0.7. The separation efficiency of waste as change suction speed was the highest efficiency when the suction speed was 25~26 m/s. Shape of the inlet, depending on how the transfer pipe of the duct pressure loss occurs because the inlet velocity changes through the appropriate design standards to allow for continued research is needed.