• 제목/요약/키워드: environmental damage

검색결과 3,385건 처리시간 0.027초

GENE-SPECIFIC OXIDATIVE DNA DAMAGE IN HELICOBACTER PYLORI INFECTED HUMAN GASTRIC MUCOSA

  • Jinhee Chol;Yoon, Sun-Hee;Kim, Ja-Eun;Rhee, Kwang-Ho;Youn, Hee-Sang;Chung, Myung-Hee
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.84-84
    • /
    • 2002
  • Abstract To study the status of oxidative DNA damage in Helicobacter pylori infection in more details, gene-specific oxidative DNA damage was investigated by examining oxidative DNA damage to individual genes. This was done by determining the loss of PCR product of a targeted gene before and after gastric mucosal DNA was treated with 8-hydroxyguanine glycosylase, which cleaves DNA at the 8-hydroxyguanine residues.(omitted)

  • PDF

A Study on the Estimation of Human Damage Caused by the LP Gas Flame in Enclosure using Probit Model

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • 한국가스학회지
    • /
    • 제13권3호
    • /
    • pp.43-48
    • /
    • 2009
  • The energetic and environmental problems have been getting serious after the revolution of modern industry. Therefore, demand of gas as an eco-friendly energy source is increasing. With the demand of gas, the use of gas is also increased, so injury and loss of life by the fire have been increasing every year. Hence the influence on flame caused by Vapor Cloud Explosion in enclosure of experimental booth was calculated by using the API regulations. And the accident damage was estimated by applying the influence on the adjacent structures and people into the PROBIT model. According to the probit analysis, the spot which is 5meter away from the flame has nearly 100% of the damage probability by the first-degree burn, 27.8% of the damage probability by the second-degree burn and 14.5% of the death probability by the fire.

  • PDF

구조손상 검출을 위한 새로운 Pitch-catch 기법 (A new pitch-catch method for structural damage detection)

  • 최정식;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.148-151
    • /
    • 2009
  • In these days it is important to secure the life and stability of the structure such as aircrafts, automobiles and building. So the structural health monitoring is needed. In conventional lamb wave techniques, damage is identified by comparing the measured data (baseline signals) and the current data. But this method can lead to high false signal in the intact condition of the structure due to environmental conditions of the structure. As a solution to resolve it, the structural health monitoring method which doesn't use baseline signals is necessary. Damaged structure has unusual elastic wave. This paper proposed a PC(pitch-catch) method which doesn't use baseline signal. New baseline signals can get from detection signal. Damage signals based on new baseline signals. This paper made an image includes damage information by applying damage-signals to beamformming.

  • PDF

On the use of numerical models for validation of high frequency based damage detection methodologies

  • Aguirre, Diego A.;Montejo, Luis A.
    • Structural Monitoring and Maintenance
    • /
    • 제2권4호
    • /
    • pp.383-397
    • /
    • 2015
  • This article identifies and addresses current limitations on the use of numerical models for validation and/or calibration of damage detection methodologies that are based on the analysis of the high frequency response of the structure to identify the occurrence of abrupt anomalies. Distributed-plasticity non-linear fiber-based models in combination with experimental data from a full-scale reinforced concrete column test are used to point out current modeling techniques limitations. It was found that the numerical model was capable of reproducing the global and local response of the structure at a wide range of inelastic demands, including the occurrences of rebar ruptures. However, when abrupt sudden damage occurs, like rebar fracture, a high frequency pulse is detected in the accelerations recorded in the structure that the numerical model is incapable of reproducing. Since the occurrence of such pulse is fundamental on the detection of damage, it is proposed to add this effect to the simulated response before it is used for validation purposes.

경량전철 복합 적층판의 환경변화에 대한 저속충격특성 (Low velocity impact characteristics on environmental variation of composite laminates used in the light rail transit)

  • 김후식;김재훈;이영신;박병준;조정미
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.86-91
    • /
    • 2002
  • Glass/phenolic composite laminates have been used in the field of non-flammable light rail transit and their applications have expanded more widely. Low velocity impact tests have been used to evalute the effect of temperature and acceleration aging on low velocity impact response of phenolic matrix composites reinforced with woven E-glass fabric. The damage of matrix cracking and delamination are suddenly reduced the compressive strength after impact. The damage area increases with increasing temperature and impact energy. UT C-scan is used to determine damage areas by impact loading. Therefore, all this observations indicate reduced impact damage resistance and damage tolerance of the laminates at elevated temperature.

  • PDF

항만지역의 지반증폭 특성을 반영한 실시간 지진피해 평가방안 수립 (Real-time Seismic Damage Estimation for Harbor Site Considering Ground Motion Amplification Characteristics)

  • 김한샘;유승훈;장인성;정충기
    • 한국지반공학회논문집
    • /
    • 제28권5호
    • /
    • pp.55-65
    • /
    • 2012
  • 본 연구에서는 항만 지역의 지반 조건과 계측된 암반노두 가속도를 이용하여 지반증폭 특성이 반영된 지진피해평가 방안을 구축하였다. 먼저 지반조사 자료를 토대로 부지응답해석을 수행하여 항만지역의 암반노두 가속도와 지표면 최대가속도의 상관관계식을 결정한다. 결정된 대상 항만의 상관관계식은 지진피해평가 시스템 상에 DB화 되고, 지진 발생 시 계측된 암반노두 가속도를 입력받아 실시간으로 지표면 최대가속도를 결정한다. 지진 발생 시 실시간으로 결정되는 PGA 값과 상부 구조물의 지진취약도 함수를 이용하여 항만구조물의 지진피해 등급을 결정할 수 있다. 또한, 본 연구에서는 구축된 평가 방안에 따라 가상 지진을 적용하여 인천항만 지역 내 항만 구조물의 지진 피해를 추정하고 등급화 하였다.

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2002년도 추계국제학술대회
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

광대역 이봉형 응력 범위 스펙트럼에 대한 주파수 영역 피로 손상 평가 모델에 대한 연구 (A Study on Frequency Domain Fatigue Damage Prediction Models for Wide-Banded Bimodal Stress Range Spectra)

  • 박준범;강찬회;김경수;정준모;유창혁
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.299-307
    • /
    • 2011
  • The offshore plants such as FPSO are subjected to combination loading of environmental conditions (swell, wave, wind and current). Therefore the fatigue damage is occurred in the operation time because the units encounter the environmental phenomena and the structural configurations are complicated. This paper is a research for frequency domain fatigue analysis of wide-band random loading focused on accuracy of fatigue damage estimation regarding the proposed methods. We selected ideal bi-modal spectrum. And comparison between time-domain fatigue analysis and frequency-domain fatigue analyses are conducted through the fatigue damage ratio. Fatigue damage ratios according to Vanmarcke's bandwidth parameter are founded for wide-band. Considering safety, we recommend that Jiao-Moan and Tovo-Benasciutti methods are optimal way at the fatigue design for wide-band response. But, it is important that these methods based on frequency-domain unstably change the accuracy according to the material parameter of S-N curve. This study will be background and guidance for the new frequency-domain fatigue analysis development in the future.

An electromechanical impedance-based method for tensile force estimation and damage diagnosis of post-tensioning systems

  • Min, Jiyoung;Yun, Chung-Bang;Hong, Jung-Wuk
    • Smart Structures and Systems
    • /
    • 제17권1호
    • /
    • pp.107-122
    • /
    • 2016
  • We propose an effective methodology using electromechanical impedance characteristics for estimating the remaining tensile force of tendons and simultaneously detecting damages of the anchorage blocks. Once one piezoelectric patch is attached on the anchor head and the other is bonded on the bearing plate, impedance responses are measured through these two patches under varying tensile force conditions. Then statistical indices are calculated from the impedances, and two types of relationship curves between the tensile force and the statistical index (TE Curve) and between statistical indices of two patches (SR Curve) are established. Those are considered as database for monitoring both the tendon and the anchorage system. If damage exists on the bearing plate, the statistical index of patch on the bearing plate would be out of bounds of the SR curve and damage can be detected. A change in the statistical index by damage is calibrated with the SR curve, and the tensile force can be estimated with the corrected index and the TE Curve. For validation of the developed methodology, experimental studies are performed on the scaled model of an anchorage system that is simplified only with 3 solid wedges, a 3-hole anchor head, and a bearing plate. Then, the methodology is applied to a real scale anchorage system that has 19 strands, wedges, an anchor head, a bearing plate, and a steel duct. It is observed that the proposed scheme gives quite accurate estimation of the remaining tensile forces. Therefore, this methodology has great potential for practical use to evaluate the remaining tensile forces and damage status in the post-tensioned structural members.

CFD 시뮬레이션을 활용한 화학물질 누출사고 분석에 관한 연구 (A Study on the Analysis of Chemical Leakage Accidents Using CFD Simulation)

  • 안수빈;장창봉;이경수;권혜옥
    • 한국산업보건학회지
    • /
    • 제33권3호
    • /
    • pp.346-354
    • /
    • 2023
  • Objectives: Chemical accidents cause extensive human and environmental damage. Therefore, it is important to prepare measures to prevent their recurrence and minimize future damage through accident investigation. To this end, it is necessary to identify the accident occurrence process and analyze the extent of damage. In this study, the development process and damage range of actual chemical leakage accidents were analyzed using CFD. Methods: For application to actual chemical leakage accidents using FLACS codes specialized for chemical dispersion simulation among CFD codes, release rate calculation and 3D geometry were created, and scenarios for simulation were derived. Results: The development process of the accident and the dispersion behavior of materials were analyzed considering the influencing factors at the time of the accident. In addition, to confirm the validity of the results, we compared the results of the actual damage impact investigation and the simulation analysis results. As a result, both showed similar damage impact ranges. Conclusions: The FLACS code allows the detailed analysis of the simulated dispersion process and concentration of substances similar to real ones. Therefore, it is judged that the analysis method using CFD simulation can be usefully applied as a chemical accident investigation technique.