• Title/Summary/Keyword: environmental cost

Search Result 3,854, Processing Time 0.111 seconds

The Cost Structure of the Lines of Urban Railway (도시철도 노선의 비용구조 분석)

  • Kim, Soo Hyun;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1559-1569
    • /
    • 2014
  • The purpose of this study is to estimate the degree of cost inefficiency for the urban railway lines of a metropolitan city operated by public institutions in Korea and identify the causes of this inefficiency. To this end, we assume that the urban railway lines produce the output of train-km by putting three production factors of labor, electric power and maintenance and set the variable cost function model with the translog function to make a stochastic cost frontier analysis. Based on estimated result, we conclude that the cost savings for 6 years of all lines are about 6,672 hundred million won and top five lines with high inefficiency are Busan Line1, Daegu Line1, Daejeon Line1, Gwangju Line1, and Daegu Line2. The causes of inefficiency are attributable to labor and maintenance factors. The results of this study can be useful in case of finding the priorities of measures and specific plans for reducing labor and maintenance costs in the urban railway operation.

Road Construction Cost Estimation Model in the Planning Phase Using Artificial Neural Network (인공신경망을 적용한 기획단계의 도로건설 공사비 예측 모델)

  • Han, Hyeong Dong;Kim, Jeong Hwan;Yoon, Jung Ho;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.829-837
    • /
    • 2011
  • Construction cost estimation in planning phase which calculates the cost for performing construction tasks is used for various ways. Meanwhile, in the case of road construction, the existing cost estimating method in early phase based on numerical mean value of the past is not accurate to be used. This paper propose neural network model for estimating road construction cost in planning phase to solve the limit of current cost estimating method. The model was designed using past road construction bidding records, and variables of model were optimized through trial and error. The estimation result of the model was compared with regression analysis and government's standard and it was verified that the model is better in accuracy. It is expected that the proposed model will be used for road cost estimation in planning phase.

A Study of the Regulations for Calculation of Acceleration Costs on Construction Work (건설공사 공기단축으로 인한 추가비용의 산정규정에 관한 연구)

  • Min, Byeong-UK;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.409-417
    • /
    • 2017
  • The study is concerned with doing research on the plan to prevent the dispute occurring between contract parties regarding the additional cost generated when the construction period is shortened during construction work. After the review of the claim cases and the judgment cases of the court regarding the additional cost caused by the shortened construction period, the representative problem is the incomplete regulations on calculating the additional cost. In the 1st stage of the results of the research on the problem, the procedure handling the additional cost is presented, and the process of planning and approving the shortening of the construction period is gone through in the stage of the procedure to prevent the dispute on the additional cost between contract parties. In the 2nd stage, the plan on enacting and revising the regulations on removing the incomplete problems of the current regulations relating to the calculation of the additional cost. The basis for the advanced contract management is provided by resolving the incomplete problems of the current regulations relating to the shortening of the construction period with the prevention of a dispute and the resultant loss.

Road O&M Cost Prediction Model with the Integration of the Impacts of Climate Change using Binomial Tree Model (기후변화 영향을 고려한 도로시설 유지관리 비용변동성 예측 이항분석모델)

  • Kim, Du Yon;Kim, Byungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1165-1171
    • /
    • 2015
  • Due to the increasing trend of operation and maintenance cost (O&M cost) of infrastructure, the accurate estimation of O&M cost is crucial part to the government. Recent literatures pointed out that gradual climate changes such as average temperature changes, average precipitation changes, and etc. have significant impact on infrastructure O&M cost. This research is intended to develop a long-term O&M cost prediction model of road facilities by considering the impacts of average temperature changes. For this end, the climate change scenarios of Intergovernmental Panel on Climate Change (IPCC)'s $5^{th}$ report are adopted to structure the impact of average temperature changes by using binomial lattice model. The proposed framework is expected to regional government in supporting decisions for road O&M cost.

Study on the Improvement of Proposal Works for PPP Project: Focused on Operation and Maintenance Cost (민간투자사업의 제안서 작성 업무 개선에 관한 연구 - 운영관리비 산정 업무를 중심으로 -)

  • Koo, Ja Kyung;Lee, Dong Wook;Shim, Myung Seob;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.655-662
    • /
    • 2010
  • As the national competitive power indicator, the infrastructures have been constructed with government's SOC budgets. However, even SOC budget is decreased, Public-Private Partnership Project (PPP project) has been introduced to solve demands on extending infrastructures, and among PPP projects, road projects take high portions. This study analyzes the operation & management item of financial model which is connected to the O&M cost and project proposal of previously proposed road project and analyzes the Korea Expressway Co.,'s project cost items and O&M tasks to reflect the characteristics of road projects. Based on results, this study suggests necessity of the O&M cost breakdown structure and the cost calculation standard on each cost item. Also, for the existing task execution tools, O&M cost calculation tool and finance analysis task tool will be integrated, and the system is suggested web-based system. Thus, it is expected that it contributes to the securing overall business values on PPP project and expending profit-base infrastructures.

Enhanced TPH Degradation of Diesel-Contaminated Soil by Microwave Heating (디젤오염토양의 TPH 분해를 위한 마이크로파의 가열특성)

  • Jung, Byung-Gil;Kim, Dae-Yong;Kim, Jung-Kwon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.479-484
    • /
    • 2008
  • The application of microwave technology has been investigated in the remediation of diesel-contaminated soil. The paper deals with economic assessment by means of cost analysis and degradation characteristics at different microwave powers for total petroleum hydrocarbon (TPH) in diesel contaminated soils. The soils from S Mountain around the D University were sampled. The samples were screened with 2.0 mm mesh and dried for 6 hours before the diesel was added into the dried soils. The diesel-contaminated soil (3,300 mg THP/kg soil) was prepared with diesel (S Co.). The drying process was carried out in a microwave oven, a standard household appliance with a 2,450 MHz frequency and 700 W of power. The experiments were conducted from 0 to 20 minutes as the microwave powers increased from 350W to 500W to 700W. The concentrations of TPH were analysed using a gas chromatography/mass spectrometer (GC/MS). The initial concentration of TPH was 3,300 mg TPH/kg soil. The weight of contaminated soil was 200g. The concentration of TPH was decreased to 1,828 mg TPH/kg soil (44.7%), 1,347 mg TPH/kg soil (59.2%) and 1,014 mg TPH/kg soil (69.3%) at 350W, 500W and 700W for 15 minutes respectively. In addition, the curve was best fit with first order kinetics using the least-square method. The ranges of a first order rate constant k and r-square were $0.0298{\sim}0.0375min^{-1}$ and $0.9373{\sim}0.9541$ respectively.

Evaluation of Economic Feasibility of Power Generation System using Waste Woody Biomass in a CFBC Plant (순환유동층연소로에서 폐목질계 바이오매스를 이용한 발전 시스템의 경제성 평가)

  • Kim, Sung-June;Nam, Kyung-Soo;Lee, Jae-Sup;Seo, Seong-Seok;Lee, Kyeong-Ho;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Economic feasibility of power generation system using waste woody biomass in a circulating fluidized bed combustor has been investigated. Effects of important variables such as capital investment, cost of waste wood, certified emission reduction(CER), system marginal price(SMP) on the benefit of business have been analyzed. Internal rate of return(IRR) was predicted as 16.67%, which implicates the business is promising based on the assumptions such as SMP of 99 Won/kWh, capital cost of 10.65 billion won, and complimentary providing of waste wood. Major factors affecting the benefit of business were as follows; system marginal price, operational rate, capital investment, expenditure of waste wood, certified emission reduction. In addition, it must be necessary to consider CHP power plant providing steam as one of the means to diversify sales network, for the management of the business risk.

Evaluation of the Economics of High Speed Machining Considering Environmental Effects (환경영향을 고려한 고속절삭가공의 경제성 평가)

  • Chang, Yoonsang;Kim, Sun-Tae
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.182-189
    • /
    • 2006
  • In this study, high speed machining is evaluated with regard to economical and environmental effects. Considering environmental loads, machining costs are analyzed with the mathematical models of machining economics and cutting fluid loss. Data from the tool life experiments of high speed milling and turning are used for the analysis. The analysis of high speed milling shows that the machining cost decreases as increasing the cutting speed. In turning process, the cooling method using cutting fluid shows the minimum machining cost. Considering both machining and environmental costs, cooling method using cold air is superior to other methods.

  • PDF

Benefit of the Drinking Water Supply System in Office Building by Rainwater Harvesting: A Demo Project in Hanoi, Vietnam

  • Dao, Anh-Dzung;Nguyen, Viet-Anh;Han, Mooyoung
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.103-108
    • /
    • 2013
  • Vietnam is a developing country with the rate around 5%-6% per year, especially in urban areas. Rapidly developed urban areas lead to stress for infrastructure and the water supply is also stressed. In Hanoi city, total water capacity from the manufactories is around one million cubic meters per day and almost the entire main water source is groundwater but it is not enough to supply all of Hanoi's people, especially in the summer. A demo project is implemented in Hanoi University of Civil Engineering (HUCE) to produce drinking water by using the rainwater and membrane system and supply for people. In this project, rainwater is collected on the rooftop of the lecture building with an area of around $500m^2$ and $100m^3$ volumetric rainwater tanks. Afterwards, the rainwater is treated by the micro-membrane system and supplied to the tap water. Total cost for construction, technology and operation in the first year is around USD 48,558. In the long-term (15 yr) if HUCE invests in the same system, with $20m^3$ volumetric storage tank, it can provide drinking water for 500 staffs in every year. The cost of investment and operation for this system is lower than 30% compared to buying bottled water with the price USD 1.8/bottle. The drinking water parameters after treatment are pH, 7.3-7.75; turbidity, 0.6-0.8 NUT; total dissolved solids, 60-89 mg/L; coliform, 0; heavy metal similar with water quality in the bottle water in Vietnam.

A comparative study on defluoridation capabilities of biosorbents: Isotherm, kinetics, thermodynamics, cost estimation and regeneration study

  • Yihunu, Endashaw Workie;Yu, Haiyan;Junhe, Wen;Kai, Zhang;Teffera, Zebene Lakew;Weldegebrial, Brhane;Limin, Ma
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.384-392
    • /
    • 2020
  • The presence of high fluoride concentration (> 1.5 mg/L) in water causes serious health problems such as fluorosis, infertility, brain damage, etc., which are endemic to many places in the world. This study has investigated the fluoride removal capacity of the novel activated biochar (BTS) and hydrochar (HTS) using Teff (Eragrostis tef) straw as a precursor. Activated biochar with mesoporous structures and large specific surface area of 627.7 ㎡/g were prepared via pyrolysis process. Low-cost carbonaceous hydrochar were also synthesized by an acid assisted hydrothermal carbonization process. Results obtained from both adsorbents show that the best local maximum fluoride removal was achieved at pH 2, contact time 120 min and agitation speed 200 rpm. The thermodynamic studies proved that the adsorption process was spontaneous and exothermic in nature. Both adsorbents equilibrium data fitted to Langmuir isotherm. However, Freundlich isotherm fitted best for BTS. The maximum fluoride loading capacity of BTS and HTS was found to be 212 and 88.7 mg/g, respectively. The variation could primarily be attributed to a relatively larger Surface area for BTS. Hence, to treat fluoride contaminated water, BTS can be promising as an effective adsorbent.