• Title/Summary/Keyword: environmental cost

Search Result 3,854, Processing Time 0.027 seconds

A Study on Risk Analysis and Management Plan for Development Projects (개발사업(산업단지, 골프장)의 리스크 분석 및 관리방안)

  • Jeong, Min Young;Lee, Min Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.229-238
    • /
    • 2022
  • With rapid industrialization since the 1960s, development projects have contributed to the development of the national economy. In addition to the development projects promoted by the government, private project operators are also promoting development projects for reasons such as increased public convenience, insufficient financing of SOC assets, and expansion of their own development projects other than public orders. However, as the economy has been stagnating due to several factors such as continued supply of facilities for decades and recent COVID-19, the success of the development projects are unsure these days. Therefore, this study attempted to analyze project costs through the case of such development projects, and to present a plan to judge and manage the risks of each project cost item in advance. The AHP technique, which is widely used as a risk factor selection method for existing development projects, was used, and items were determined through interviews with experts related to development projects in order to stratify the upper and lower subjects of the risk. We analyzed how the derived risk factors affect the business performance through sensitivity analysis, and finally substituted the risk factors management plan into the risk response strategy and suggested.

Organizational Reform for the Successful Implementation of Infrastructure Asset Management using Balanced Score Cards (균형성과지표를 활용한 사회기반시설 자산관리 조직 개선 방안)

  • Chae, Myung Jin;Park, Ha Jin;Lee, Gu;Lee, Geon Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.745-752
    • /
    • 2009
  • Management of social infrastructure has been advanced from facility management (FM) to asset management (AM), which adopts the aggressive and proactive methods in predicting the deterioration of infrastructure, prevents failures, and eventually saves maintenance cost. Infrastructure asset management is not a simple engineering technique, but it is a new paradigm evolved from facility management practices. To implement the infrastructure asset management successfully, organizational reform is very important. This paper suggests critical success factors and key performance indicators to implement the infrastructure asset management for facility managers of government owned social infrastructures such as roads and bridges. Reorganizing the facility management group requires new vision, objectives, strategies for the paradigm-changing asset management. This paper uses Balanced Score Card (BSC) which is a proven method in measuring and setting new objectives for an organization. Once the performance indicators are reviewed repeatedly by facility managers through experts workshops, developed BSC can be used in practice. This paper discusses the development of robust BSC scoring method through in depth literature reviews and investigation of asset management practices of domestic and international cases.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Examination for Controlling Chloride Penetration of Concrete through Micro-Cracks with Surface Treatment System (표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성)

  • Yoon, In-Seok;Chae, Gyu-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.729-735
    • /
    • 2008
  • For well-constructed concrete, its service life is a long period and it has an enough durability performance. For cracked concrete, however, it is clear that cracks should be a preferential channel for the penetration of aggressive substance such as chloride ions accoding to author's previous researches. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study to deal with the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems such as penetrant, coating, and their combination on chloride penetration through microcracks. Experimental results showed that penetrant can't cure cracks. However, coating and combined treatment can prohibit chloride penetration through cracks upto 0.06 mm, 0.08 mm, respectively.

Comparing Methods for Determining Flood Protection Elevation in Urban Built-up Areas (도시지역 방어침수위 설정방법 비교분석)

  • Lee, Yang Jae;Shin, Sang Young;Lee, Chang Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.271-281
    • /
    • 2008
  • To determine the flood protection elevation (FPE) in urban built-up areas, this study examines four possible methods: using the highest flood elevation in the past, extending base flood elevations of nearby watercourse to inland, and two simulation methods of inland flood under the same rainfall used in the watercourse planning nearby. According to the case study of the Jang-An Drainage Area, Seoul, the highest flood elevation in the past and simulation results of inland flood under the same rainfall in the watercourse planning nearby tend to get similar results, while extending base flood elevations of nearby watercourse to inland shows much higher elevations than other results. Meanwhile, cost-benefit analysis, when regulating residential/commercial uses below the FPE by each of four methods, suggest that planners need to consider carefully the economic feasibility of FPE used to choose appropriate methods.

The Integrational Operation Method for the Modeling of the Pan Evaporation and the Alfalfa Reference Evapotranspiration (증발접시 증발량과 알팔파 기준증발산량의 모형화를 위한 통합운영방법)

  • Kim, Sungwon;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2B
    • /
    • pp.199-213
    • /
    • 2008
  • The goal of this research is to develop and apply the integrational operation method (IOM) for the modeling of the monthly pan evaporation (PE) and the alfalfa reference evapotranspiration ($ET_r$). Since the observed data of the alfalfa $ET_r$ using lysimeter have not been measured for a long time in Republic of Korea, Penman-Monteith (PM) method is used to estimate the observed alfalfa $ET_r$. The IOM consists of the application of the stochastic and neural networks models, respectively. The stochastic model is applied to generate the training dataset for the monthly PE and the alfalfa $ET_r$, and the neural networks models are applied to calculate the observed test dataset reasonably. Among the considered six training patterns, 1,000/PARMA(1,1)/GRNNM-GA training pattern can evaluate the suggested climatic variables very well and also construct the reliable data for the monthly PE and the alfalfa $ET_r$. Uncertainty analysis is used to eliminate the climatic variables of input nodes from 1,000/PARMA(1,1)/GRNNM-GA training pattern. The sensitive and insensitive climatic variables are chosen from the uncertainty analysis of the input nodes. Finally, it can be to model the monthly PE and the alfalfa $ET_r$ simultaneously with the least cost and endeavor using the IOM.

A Benchmarking Study on Engineering Project Delivery System - A Case Study FIDIC & U.S. Governmental Regulation - (엔지니어링 입·낙찰제도 해외사례 벤치마킹 연구 - FIDIC과 미국 제도를 중심으로 -)

  • Kim, Sang Bum;Kim, Jae Wook;Lee, Jung Dae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2D
    • /
    • pp.249-258
    • /
    • 2008
  • Korean engineering firms need to improve their performance in order to stay competitive in the globalize environments which has been led by some international movements including World Trade Organization (WTO) and Free Trade Agreements (FTA). There have been various activities and researches focusing on how to improve competitiveness of Korean engineering firms and the out-of-fashion Engineering Project Delivery System (EPDS) has repetitively identified as one of main barriers to deter advancements of Korean engineering industry. Therefore, this research attempted to investigate global standards of EPDS such as International Federation of Consulting Engineers (FIDIC), American Federal Acquisition Regulations (FAR), Brooks Act, and so on. The procedures of international EPDSs along with a few case studies were comprehensively analyzed and compared with Korean EPDS in order to propose recommendations of improving Korean EPDS. Some major differences between international and Korean EPDS were identified and they includes emphasis on qualifications of engineers and/or firms rather than their proposed cost, extensive use of long and short-list, common use of negotiation process, etc. Research findings are envisioned to guide the Korean public engineering sector to innovate Korean EPDS.

A Study on the Estimation of Change Orders Impact for the Public Construction (공공건설공사 설계변경에 따른 손실 추정에 관한 기초연구)

  • Lee, Min-Jae;Park, Bum-Jin;Im, Keon-Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.363-369
    • /
    • 2008
  • Change is inevitable and is a reality of construction projects. Change adjustment includes the cost associated with materials, labor, etc. However, the actions of a contractor can cause a loss of productivity and furthermore can result in disruption of the whole project because of a cumulative or ripple effect. Because of its complicated nature, it becomes a complex issue to determine the cumulative impact (ripple effect) caused by single or multiple change orders. Furthermore, owners and contractors do not always agree on the adjusted contract price for the cumulative impact of the changes. What is needed is a reliable method to identify and quantify the loss of productivity caused by cumulative impact of change orders. This study survey the change orders data in domestic area for public construction and analyze to quantify change order impact. This study developed concepts of "%CO", "%Delta", "%T" to capture change order effect on project and search the relationships between them. Finally, this study find strong relationship between change order and loss.

Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method (변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법)

  • Chung, Keun Young;Lee, Sung Uk;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.671-678
    • /
    • 2006
  • In this study, to describe vehicle-structure dynamic interaction phenomena with 1/4 vehicle model, nonlinear Hertzian contact spring and nonlinear contact damper are adopted. The external loads acting on 1/4 vehicle model are selfweight of vehicle and geometry information of running surface. The constraint equation on contact surface is implemented by the Penalty method with stabilization and the reaction from constraint violation. To describe pitching motion of various vehicles two types of the displacement constraint equations are exerted to connect between car bodies and between bogie frames, i.e., the rigid body connection and the rigid body connection with pin, respectively. For the time integration of dynamic equations of vehicles and structure Newmark time integration scheme is adopted. To reduce the error caused by inadequate time step size, adaptive time-stepping technique is also adopted. Thus, it is expected that more versatile dynamic interaction phenomena can be described by this approach and it can be applied to various railway dynamic problems with low computational cost.

Development of Truck Axle Load Distribution Model using WIM Data (WIM 자료를 활용한 화물차 축하중 분포 모형 개발)

  • Lee, Dong Seok;Oh, Ju Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.821-829
    • /
    • 2006
  • Traffic load comprise primary input to pavement design causing pavement damage. therefore it should be proceeded suitable traffic load distribution modeling for pavement design and analysis. Traffic load have been represented by equivalent single axle loads (ESALs) which convert mixed traffic stream into one value for design purposes. But there are some limit to apply ESALs to other roads because it is empirical value developed as part of the original AASHO(American Association of State Highway Officials) road test. There have been many efforts to solve these problems. Several leading country have implemented M-E(Mechanistic-Empirical) design procedures based on mechanical concept. As a result, they established traffic load quantification method using load distribution model known as Axle Load Spectra. This paper details Axle Load Spectra and presents axle load distribution model based on normal mixture distribution function using truck load data collected by WIM system installed in national highway. Axle load spectra and axle load distribution model presented in this paper could be useful for basic data when making traffic load quantification plan for pavement design, overweight vehicle permit plan and pavement maintenance cost plan.