References
- 건설교통부(2007) 수자원 관리 종합정보 시스템 홈페이지 http://www.wamis.go.kr
- 기상청(2007) 기상청 홈페이지 http://www.kma.go.kr
- 김성원(2003) 추계학적모형과 신경망모형을 연계한 병렬저수지군의 유입량산정. 한국수자원학회 논문집, 한국수자원학회, 제36권, 제2호, pp. 195-209
- 김성원(2005) 신경망모형에 의한 홍수위예측의 신뢰성분석 1. 모형의 개발 및 적용. 대한토목학회 논문집, 대한토목학회, 제25권, 제6B호, pp. 473-482
- 김성원, 이순탁, 조정석(2001) 중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측. 한국수자원학회 논문집, 한국수자원학회, 제34권, 제4호, pp. 303-316
- Allen, R.G., Jensen, M.E., Wright, J.L., and Burman, R.D. (1989) Operational estimates of reference evapotranspiration. Agrono. J., Vol. 81, No. 4, pp. 650-662 https://doi.org/10.2134/agronj1989.00021962008100040019x
- Ayyub, B.M. and McCuen, R.H. (1997) Probability, Statistics, and Reliability for Engineers and Statistics, Chapman & Hall/CRC, New York, NY
- Bishop, C.M. (1994) Neural networks and their applications. Rev. Scien. Instru. Vol. 65, pp. 1803-1832 https://doi.org/10.1063/1.1144830
- Burman, R.D. (1976) Intercontinental comparison of evaporation estimates. J. of Irrig. and Drain. Engr., ASCE, Vol. 93, No. 1, pp. 61-79
- Christiansen, J.E. (1966) Estimating pan evaporation and evapotranspiration evapotranspiration from climatic data. In Irrigation and drainage Special Conference, ASCE, Las Vegas, NV, pp. 193-231
- Deb, K. (2001) Multi-objective optimization using evolutionary algorithms, John Wiley & Sons, Chichester
- Fahlman, S.E. and Lebiere, C. (1990) The cascade-correlation learning architecture. Rep. CMU-CS-90-100, Carnegie Mellon University, Pittsburgh, PA
- Food and Agriculture Organization (FAO) (1991) Report on the expert consultation on revision of FAO methodologies for crop water requirement, Land and Water Devel. Div., Rome, Italy
- Hargreaves, G.H. (1966) Consumptive use computations from evaporation pan data. In Irrigation and Drainage Special Conference, ASCE, Las Vegas, NV, pp. 35-62
- Haykin, S. (1999) Neural networks : A comprehensive foundation, Prentice Hall, NJ
- Hirsch, R.M. (1979) Synthetic hydrology and water supply reliability. Water Resour. Res., Vol. 15, No. 6, pp. 1603-1615 https://doi.org/10.1029/WR015i006p01603
- Holland, J.H. (1975) Adaptation in natural and artificial systems, University Michigan Press, Ann Arbor, MI
- Howell, T.A., Phene, C.J., and Meek, D.W. (1983) Evaporation from screened Class A pans in a semi-arid environment. Agric. Met., Vol. 29, No. 1, pp. 111-124 https://doi.org/10.1016/0002-1571(83)90044-4
- Jain, A. and Srinivasulu, S. (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network technique. Water Resour. Res., Vol. 40, No. 4, W04302 https://doi.org/10.1029/2003WR002355
- Jensen, M.E. (1974) Consumptive use of water and irrigation water requirement, Report Tech. Comm. on Irrigation Water Requirements, Irrigation and Drainage, ASCE
- Jensen, M.E., Burman, R.D., and Allen, R.G. (1990) Evapotranspiration and irrigation water requirements, ASCE Manual and Report on Engineering Practice No. 70, ASCE, NY
- Kim, S. and Kim, H.S. (2006) Estimation of the reference evapotranspiration using neural networks model and limited climatic variables. Proc. World Environmental & Water Resources Congress 2006, ASCE/EWRI, Omaha, NE. [ Printed in CD ]
- Kim, S. and Kim, H.S. (2008) Uncertainty reduction of the flood stage forecasting using neural networks model. J. of Amer. Water Resour. Associ., Vol. 44, No. 1, pp. 148-165 https://doi.org/10.1111/j.1752-1688.2007.00144.x
- Kim, S. and Kim, H.S. (In press) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling, J. of Hydro., Accepted
- Kim, S. and Jee, H. (2006) An expansion of the ungaged pan evaporation using neural networks model in rural regions, South Korea. Proc. World Environmental & Water Resources Congress 2006, ASCE/EWRI, Omaha, NE. [ Printed in CD ]
- Kohler, M.A., Nordenson, T.J. and Fox, W.E. (1955) Evaporation from pans on lakes, US Department of Commerce, Weather Bureau Research Paper 38, Washington, DC
- Kumar, M., Raghuwanshi, N.S., Singh, R., Wallender, W.W., and Pruitt, W.O. (2002) Estimating evapotranspiration using artificial neural network. J. of Irrig. and Drain. Engr., ASCE, Vol. 128, No. 4, pp. 224-233 https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224)
- Liong, S.Y., Chan, W.T., and ShreeRam, J. (1995) Peak-flow forecasting with genetic algorithm and SWMM. J. of Hydrau. Engr., ASCE, Vol. 121, No. 8, pp. 613-617 https://doi.org/10.1061/(ASCE)0733-9429(1995)121:8(613)
- McCuen, R.H. (1993) Microcomputer applications in statistical hydrology, Prentice Hall, NJ
- Mishra, A.K., Desai, V.R., and Singh, V.P. (2007) Drought forecasting using a hybrid stochastic and neural network model J. of Hydro. Engr., ASCE, Vol. 12, No. 6, pp. 626-638 https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(626)
- Monteith, J.L. (1965) The state and movement of water in living organism. Proc., Evaporation and Environment, XIXth Symp., soc. For Exp. Biol., Swansea, Cambridge Univ. Press, NY, pp. 205-234
- Neuroshell 2 (1993) Ward systems group, Inc., MD
- Penman, H.L. (1948) Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London, 193, pp. 120-146
- Powell, M.J.D. (1987) Radial basis functions for multivariable interpolation: A review. In Algorithms for the Approximation of Functions and Data, Mason, J.C., and Cox, M.G., eds., Oxford, England : Clarenden Press, pp. 143-167
- Salas, J.D. and Abdelmohsen, M. (1993) Initialization for generating single site and multisite low order PARMA processes. Water Resour. Res., Vol. 29, No. 6, pp. 1771-1776 https://doi.org/10.1029/93WR00371
- Salas, J.D., Delleur, J.R., Yevjevich, V., and Lane, W.L. (1980) Applied modeling of hydrologic time series, Water Resor. Pub., Littleton, CO
- Salas, J.D., Markus, M., and Tokar, A.S. (2000) Streamflow forecasting based on artificial neural networks. In Artificial neural networks in hydrology, Govindaraju, R.S., and Ramachandra Rao, A., eds., Water sci. and tec. lib. Vol. 36, Kluwer Academic Press, pp. 23-51
- Salas, J.D., Smith, R.A., Tabios III, G.Q., and Heo, J.H. (2001) Statistical computing techniques in water resources and environmental engineering, Unpublished book in CE622, Colorado State University, Fort Collins, CO
- Sivakumar, B., Jayawardena, A.W., and Fernando, T.M.K.G. (2002) River flow forecasting : use of phase-space reconstruction and artificial neural networks approaches. J. of Hydrol., Vol. 265, pp. 225-245 https://doi.org/10.1016/S0022-1694(02)00112-9
- Specht, D.F. (1991) A general regression neural network. IEEE Trans. on Neural Networks, Vol. 2, No. 6, pp. 568-576 https://doi.org/10.1109/72.97934
- Sudheer, K.P., Gosain, A.K., and Ramasastri, K.S. (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J. of Irrig. and Drain. Engr., ASCE, Vol. 129, No. 3, pp. 214-218 https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214)
- Sudheer, K.P., Gosain, A.K., Rangan, D.M., and Saheb, S.M. (2002) Modeling evaporation using an artificial neural network algorithm. Hydro. Process., Vol. 16, pp. 3189-3202 https://doi.org/10.1002/hyp.1096
- Tao, P.C. and Delleur, J.W. (1976) Seasonal and nonseasonal ARMA models in hydrology J. of Hydraul. Div., ASCE, Vol. 102, No. HY10, pp. 1591-1599
- Tokar, A.S. and Johnson, P.A. (1999) Rainfall-runoff modeling using artificial neural networks. J. of Hydro. Engr., ASCE, Vol. 4, No. 3, pp. 232-239 https://doi.org/10.1061/(ASCE)1084-0699(1999)4:3(232)
- Tsoukalas, L.H. and Uhrig, R.E. (1997) Fuzzy and neural approaches in engineering, John Wiley & Sons Incorporated, New York, NY
- Veihmeyer, F.J. (1964) Evaporation: Handbook of applied hydrology, Chow, V.T. (ed.), McGraw-Hill Book Co., New York, NY
- Wasserman, P.D. (1993) Advanced methods in neural computing, Van Nostrand Reinhold, New York, NY
- Wright (1982) New evapotranspiration crop coefficients. J. of Irrig. and Drain. Engr., ASCE, Vol. 108, No. 2, pp. 57-74