• Title/Summary/Keyword: environmental approach

Search Result 3,912, Processing Time 0.03 seconds

A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis (지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발)

  • Lee, Ye-Rin;Yu, Jae-Ung;Kim, Kyungtak;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.337-352
    • /
    • 2023
  • In general, Rainfall-Runoff model parameter set is optimized using the entire data to calculate unique parameter set. However, Korea has a large precipitation deviation according to the season, and it is expected to even worsen due to climate change. Therefore, the need for hydrological data considering seasonal characteristics. In this study, we conducted regional sensitivity analysis(RSA) using the conceptual Rainfall-Runoff model, GR4J aimed at the Soyanggang dam basin, and clustered combining the RSA results with hydrometeorological data using Self-Organizing map(SOM). In order to consider the climate characteristics in parameter estimation, the data was divided based on clustering, and a calibration approach of the Rainfall-Runoff model was developed by comparing the objective functions of the Global Optimization method. The performance of calibration was evaluated by statistical techniques. As a result, it was confirmed that the model performance during the Cold period(November~April) with a relatively low flow rate was improved. This is expected to improve the performance and predictability of the hydrological model for areas that have a large precipitation deviation such as Monsoon climate.

Non-linear effects of demand-supply based metro accessibility on land prices in Seoul, Republic of Korea: Using G2SFCA Approach (서울시 수요-공급 기반 지하철 접근성이 토지가격에 미치는 비선형적 영향: G2SFCA 적용을 중심으로)

  • Kang, Chang-Deok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.189-210
    • /
    • 2022
  • Cities around the world have paid attention to public transportation as an alternative to reducing traffic congestion caused by automobile usage, excessive energy consumption, and environmental pollution. This study measures accessibility to subway stations in Seoul using a supply-demand-based accessibility technique. Then, the impacts were analyzed through land prices by use and segment. As a result of analysis using the multilevel hedonic price models, accessibility considering both supply and demand for the subway had a positive effect on both residential and non-residential land prices. The effect was stronger for residential than for non-residential. Further, among the accessibility measured by the three functions, the accessibility by the Exponential function was most suitable for the residential land price, and the accessibility measured by the Power function for the non-residential land price had the highest explanatory power. Also, looking at the impacts by land price segments, it was found that higher access to metro stations had the greatest positive impacts on the most expensive segment of residential and non-residential land prices. The results of this study can be applied not only to identify the impacts of public investment on neighborhoods, but also to support real estate valuation.

Battery Module Bonding Technology for Electric Vehicles (전기자동차 배터리 모듈 접합 기술 리뷰)

  • Junghwan Bang;Shin-Il Kim;Yun-Chan Kim;Dong-Yurl Yu;Dongjin Kim;Tae-Ik Lee;Min-Su Kim;Jiyong Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.33-42
    • /
    • 2023
  • Throughout all industries, eco-friendliness is being promoted worldwide with focus on suppressing the environmental impact. With recent international environment policies and regulations supported by government, the electric vehicles demand is expected to increase rapidly. Battery system itself perform an essential role in EVs technology that is arranged in cells, modules, and packs, and each of them are connected mechanically and electrically. A multifaceted approach is necessary for battery pack bonding technologies. In this paper, pros and cons of applicable bonding technologies, such as resistance welding, laser and ultrasonic bonding used in constructing electric vehicle battery packs were compared. Each bonding technique has different advantages and limitations. Therefore, several criteria must be considered when determining which bonding technology is suitable for a battery cell. In particular, the shape and production scale of battery cells are seen as important factors in selecting a bonding method. While dealing with the types and components of battery cells, package bonding technologies and general issues, we will review suitable bonding technologies and suggest future directions.

Natural, Nature-based Features (NNbF) - A Comparative Analysis with Nature-based Solutions (NbS) and Assessment of Its Applicability to Korea (자연/자연기반 특징(NNbF) - 자연기반해법(NbS)과 비교분석 및 국내적용성 평가)

  • Hyoseop Woo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.2
    • /
    • pp.31-39
    • /
    • 2023
  • NNbF is a newly emerging approach to reduce flood risk in coastal and fluvial areas using natural features or engineered nature-based features with the expectation of co-benefits of provisional, regulating, and socio-cultural services provided by the ecosystem. NNbF is not quite different from existing, related terms based on nature, such as NbS, Eco-DRR, NI, GI, EwN, and BwN, for all these terms include expectation of benefits for human societies by directly utilizing or mimicking nature's ecological functions. If we focus on the comprehensiveness of each term's subject and object, we can say that NbS > NNbF > (Eco-DRR, NI/GI). Among the 18 measures introduced in the NNbF International Guideline in the river and floodplain management category, it was found that measures of wash lands and floodplain restoration, including levee setback/removal and side-channel restoration, seemed to be the most applicable to rivers in Korea. These selected measures could be more effective when river managers purchase riparian lands along river courses by relevant laws for river water-quality protection.

Factors Impacting the Work Efficiency and Stress of Case Managers with the Korea Worker's Compensation & Welfare Service (근로복지공단 사례관리자의 업무 효율 및 스트레스에 영향을 미치는 요인)

  • Lee, Su-jin;Kim, Seung Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.1
    • /
    • pp.64-77
    • /
    • 2022
  • Objectives: The purpose of this study is to objectify the level of case management performance and the factors influencing performance, to improve the case management performance at the Korea Worker's Compensation & Welfare Service (KWCWS) on the basis of the recognition of the objective realities of case management by job coordinators at the KWCWS, to develop a model of case management fit for the KWCWS, and to provide a basis for establishing guidelines for standardized case management. Methods: A total of 156 questionnaires were distributed to job coordinators at the KWCWS's headquarters, six regional headquarters, and 55 branches. One hundred forty-one questionnaires were collected and 126 were analyzed statistically using SPSS 21.0. Factor analysis and reliability analysis were conducted to verify the validity and reliability of the main measurement items in the research model. Frequency analysis was conducted for general characteristics of survey subjects. Frequency analysis or descriptive statistics were conducted to identify the level of independent variables (case manager's individual variables, job variables, institutional and organizational variables). Dependent variables (case management performance) and the degree of correlation were analyzed through correlation analysis between research variables. Multiple regression analysis and hierarchical regression analysis were conducted to examine the effect of independent variables on case management performance. Results: The results of the study showed that the level of overall performance in the five stages of case management was ordinary, with an average level of 3.45 on a 5-point scale. Levels of performance by step were institutional approach and intake (3.69), assessment (3.63), goal setting and intervention planning (3.46), implementation of intervention plan (3.32), and evaluation and termination (3.20), in that order. The explanatory power of case management performance (overall) by case managers with the KWCWS was case manager's institutional and organizational variables, job variables, and individual variables, in that order. At each stage of case management, the explanatory power of a case manager's institutional and organizational variables was found to be the greatest. The model changes at each stage of case management assume similar aspects statistically. In hierarchical regression analysis, it was institutional support that had a significant effect on case management performance (overall), and institutional support had the greatest effect. The results of multiple regression analysis in which all variables are input simultaneously showed that institutional support and expertise as well as self-efficacy had a positive effect. However, case management work experience, expertise (technology), and autonomy were found to have a negative effect during the stage of case management performance. Conclusions: As a result of the study, it was confirmed that raising the case manager's expertise and support from the institution and organization are important factors to improve the level of case management performance. The research also derived practical ways of reinforcement of case manager capacity, institutional and organizational support, operation of rehabilitation-case management teams, and occupational health-related aspects.

Estimation of Friction Coefficients Based on Field Data (실측값에 근거한 마찰계수의 추정)

  • Jeon, Se Jin;Park, Jong Chil;Park, In Kyo;Shim, Byul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.487-494
    • /
    • 2009
  • Friction coefficients of the prestressing tendon are the basic information required to control the prestressing force introduced to PSC structure during jacking. However, the friction coefficients show considerable differences depending on the specifications, causing much confusion to designers. In this study, the ranges of the friction coefficients presented in domestic and foreign specifications are compared together to clarify the differences. Then, a procedure is proposed that can be used to estimate the wobble and curvature friction coefficients from field data such as elongation and prestressing force and from theory related to the friction. The procedure is applied to various tendon profiles of several PSC bridges constructed by ILM, FCM and MSS. The resulting values are compared with those presented in some specifications and assumed in jacking and a reasonable range of the friction coefficient is discussed. Lift-off tests are also performed in some bridges to further verify the results. The resulting wobble friction coefficients are not as small as those presented in AASHTO specifications but range from the lower limit to mid point of domestic specifications, while the curvature friction coefficients approach or slightly exceed the upper limit.

A Case Study of Delay Analysis for E.P.B Shield TBM Method in Construction Site (E.P.B(Earth Pressure Balance) Shield TBM 공사의 공기지연 사례연구)

  • Kwak, Jun-Hwan;Park, Hyung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.737-743
    • /
    • 2009
  • Shield TBM, since it was employed for Suyoungman Bay riverbed tunnel of Busan Subway in 2000,has been increasingly adopted in Korea, and in line with growing popularity, the study on Shield TBM has been expanded. However the studies mostly focus on ground condition in a bid to estimate the advancement rate and develop the model for calculating the excavation efficiency, whereas the efforts to analyze the cause of delay and to develop the improvement measures have been neglected. Thus the studies were mostly intended to analyze the schedule slippage focusing on ground conditions, while the study on schedule behind due to equipment itself and related facilities have yet to be attempted in earnest. This study hence was aimed at evaluating the troubles and schedule slippage caused by mechanical elements such as shield TBM equipment and tools and ground conditions, making use of FMEA approach so as to analyze the risk of schedule delay by such elements, thereby proposing the preventive measures to deal with high-risk factors. So, this study suggest the solution to highly ranked trouble factor for the purpose of enhance the efficiency on Shield TBM.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Fundamental Frequency Extraction of Stay Cable based on Energy Equation (에너지방정식에 기초한 사장 케이블 기본진동수 추출)

  • Kim, Hyeon Kyeom;Hwang, Jae Woong;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.125-133
    • /
    • 2008
  • According to longer and longer span, dynamic instability of stay cable should be prevented. Dynamic instability occurs mainly symmetric 1st mode and antisymmetric 1st mode in stay cable. Especially symmetric 1st mode has a lot of influence on sag. Therefore fundamental frequency of stay cable is different from that of taut sting. Irvine, Triantafyllou, Ahn etc. analyzed dynamic behavior of taut cable with sag through analytical technical and their researches give important results for large bounds of Irvine parameter. But each research shows mutually different values out of characteristic (cross-over or mode-coupled) point and each solution of frequency equations of all researchers can be very difficultly found because of their very high non-linearity. Presented study focuses on fundamental frequency of stay cable. Generalized mechanical energy with symmetric 1st mode vibration shape satisfied boundary conditions is evolved by Rayleigh-Ritz method. It is possible to give linear analytic solution within characteristic point. Error by this approach shows only below 3% at characteristic point against existing researches. And taut cable don't exceed characteristic point. I.e. high accuracy, easy solving techniques, and a little bit limitations. Therefore presented study can be announced that it is good study ergonomically.

Developments of Advanced Connection Type for Improvements of Mixed Structures(I) : 3D Nonlinear Analysis of the Various Connection Types for Deriving Advanced Connection Type (혼합구조의 성능 향상을 위한 개선된 접합방식의 개발 (I) : 개선된 접합방식을 도출하기 위한 3차원 비선형 해석)

  • Yun, Ik Jung;Huh, Taik Nyung;Kim, Moon Kyum;Cho, Sung Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.89-94
    • /
    • 2008
  • The problem of interaction between the structures interconnected at discrete points as like composite structures, has a attracted considerable attention for a prolonged period of time. Recently, mixed structures are applied for overcoming structural limits by developed countries. In this paper, advanced connection type of mixed structures are presented by numerical approach. Also it is performed on extensive literature review from theoretical method to numerical analysis. For analysing behaviors of mixed structures according to connection type, 2 different connections and 1 reinforced connection are compared by 3D nonlinear numerical analysis. Nonlinear analysis of mixed structures is carried out by utilizing contact elements of a general purpose structural analysis computer program(ABAQUS). By using 6 criteria, each connections are investigated. From this result, proper reinforcing and well designed connection type are proposed. And results also show that the deflections which are induced by discontinuity on mixed structures, has a linear distribution that should decrease as applying proposed connection type.