• Title/Summary/Keyword: environment-friendly concrete

Search Result 186, Processing Time 0.032 seconds

A Fundamental Study on the Development of Fire Resistance Filling of Friendly Environment Using Aerated Concrete (기포콘크리트를 이용한 친환경 내화충전제개발에 관한 기초적 연구)

  • Lee, jong-il;Lim, Nam-Gi
    • KIEAE Journal
    • /
    • v.7 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • In this study, we processed two procedures of application test of filler for fire-resistance utility that are new application methods of aerated concrete and properties test of aerated concrete according to mixing ratio because we investigated the better use of aerated concrete as filler for fireproof safety and we proposed basic data about standardization of mixing of aerated concrete. We measured flow and volume change of aerated concrete. And if its volume doesn't change, we added measuring unit weight and compressive strength. To test application of aerated concrete as filler for fireproof safety, we filled up aerated concrete to fireproof safety according to suitable mixing ratio. Then we measured maximum temperature of inner part of fireproof safety in accordance with the standard test of fireproof. According to the results, aerated concrete as filler for fireproof safety could be possibly used. So when we make aerated concrete, we should consider using an adding agent as well as a foaming agent.

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Practical Application of GGBS-Based Alkali-Activated Binder to Secondary Products of Concrete (고로슬래그 기반 알카리 활성 결합재의 콘크리트 2차 제품 적용성 평가)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.37-44
    • /
    • 2010
  • This study examined the practical application of ground granulated blast-furnace slag (GGBS) based alkali-activated (AA) binders for the development of cementless environmental-friendly secondary products of concrete, such as brick, shore protection blocks and interlocking blocks. The addition amount and type of alkaline ion to activate GGBS varied according to the diverse qualities of the secondary products of concrete required in Korean industrial standards (KS) and other specifications. Test results showed that the secondary products of concrete using GGBS-based AA binders surpassed the demanded capacities of KS and other specifications. In addition, shore protection block had a pH value close to neutral, enabling an advantageous environment for marine life. Therefore, the GGBS-based AA binders can be effectively applied to develop eco-friendly secondary products of concrete with reduced $CO_2$.

Case-based reasoning approach to estimating the strength of sustainable concrete

  • Koo, Choongwan;Jin, Ruoyu;Li, Bo;Cha, Seung Hyun;Wanatowski, Dariusz
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.645-654
    • /
    • 2017
  • Continuing from previous studies of sustainable concrete containing environmentally friendly materials and existing modeling approach to predicting concrete properties, this study developed an estimation methodology to predicting the strength of sustainable concrete using an advanced case-based reasoning approach. It was conducted in two steps: (i) establishment of a case database and (ii) development of an advanced case-based reasoning model. Through the experimental studies, a total of 144 observations for concrete compressive strength and tensile strength were established to develop the estimation model. As a result, the prediction accuracy of the A-CBR model (i.e., 95.214% for compressive strength and 92.448% for tensile strength) performed superior to other conventional methodologies (e.g., basic case-based reasoning and artificial neural network models). The developed methodology provides an alternative approach in predicting concrete properties and could be further extended to the future research area in durability of sustainable concrete.

The Effects of Development and Application of Environment Education Program by Using Places around School on the Environment-Friendly Attitudes (학교 주변 장소를 활용한 환경교육 프로그램의 개발과 적용이 환경친화적 태도에 미치는 효과)

  • Lee, Yong-Seob
    • Hwankyungkyoyuk
    • /
    • v.20 no.4
    • /
    • pp.166-179
    • /
    • 2007
  • The purpose of this study is to find a concrete plan by examining effect of environmental education program on Environment-friendly Attitudes in sixth grade elementary school and to testify the educational values of environmental education program. The study was carried out by 32 students, which was experimental group and by 32 students, control group, in the sixth grade of Y elementary school located in yangjung, Busan city. Both group was found out the same quality group through the pre-test. Environmental class using environmental education program was applied to experimental group and traditional lecture class was applied to control group. After executing post-test to each group, comparative analysis was conducted by t-test using a SPSS 12.0 program. The result of post-test showed that experimental group taken environmental class using environmental education program was more statistically meaningful than control group taken traditional lecture class in the cognitive, emotional, behavioral area. As a result, in sixth grade elementary school environmental class using a environmental education program was more effective in knowledge-acquirement about the overall environ mental programs, and in fostering Environment-friendly Attitudes and behaviors than traditional lecture class. The teacher must develop efficient environment education program in such side.

  • PDF

Combined Effect of Fly Ash and Granulated Blast Furnace Slag on Durability Performance (플라이 애시와 고로슬래그 미분말의 복합사용한 콘크리트의 내구성능 향상 효과)

  • 이창수;설진성;윤인석;박종혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.23-26
    • /
    • 2002
  • Ternary blended concrete containing both fly ash and granulated blast furnace slag is initial cost effective, and environment friendly. Furthermore, it has many technical advantages such as improvement of long term compressive strength, rheology property, reduction of hydration heat, etc. However, use and data on the performance of ternary blended concrete are limited, and it is necessary to study on the adoption of this technology. This study examined the durability performance of ternary blended concrete comparing with binary blended concrete and ordinary portland concrete. From the results of this study, it was concluded that ternary blended concrete is very suitable to submerged zone under maine environment.

  • PDF

Development of FRP Recycling Process for Regenerating Applications of Fire Resistance Performance of High Strength Concrete (고강도 콘크리트의 내화성능 용도에 따른 FRP재활용 공정 개발)

  • Lee, Seung Hee;Park, Jong Won;Yoon, Koo Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.207-215
    • /
    • 2015
  • In the last decade, increasing national research fund for recycling the waste FRP (fiber reinforced plastics) ships which has caused environmental problems, improves the technology making concrete-reinforcing fibers out of the waste FRP. Furthermore, the concrete with recycled FRP fiber was tested for the structural performance. Experimental strength tests show that use of recycled FRP powder does not reduce the compressive strength of high strength concrete, and does increase the fire resistance performance of high strength concrete significantly. But, the study in investigating the properties of recycled fiber powder from waste FRP has not been completed because of the absence of the method of separation of mat layer from the waste FRP. This study is to propose a new extracting method of the mat layer from waste FRP, which is the efficient and environment friendly system. and thus it is considered to be the useful recycling method for fire resistance high concrete products or structures.

Properties of Mixed Concrete Using Metakaolin and Copper Slag (메타카올린과 동(銅)슬래그를 활용한 콘크리트의 특성(特性))

  • Kim, Nam-Wook;Kim, Hak-Won;Bae, Ju-Seong
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • Much energy is consumed up when making a concrete. And especially, because lots of $CO_2$ is discharged for combination material, cement, we are making efforts in order to get lid of this negative thought. Recently, much interest is given to manufacturing eco concrete which is environment friendly and its' application. We should study manufacturing of the concrete whose environment friendly performance should be improved as consistent development concept in order for various approaches to be settled down our country such as lowering of environmental load, utilization of industry wastes and improvement of environment related performance. This study inquired into utilization possibility through from various tests results after manufacturing eco type mixed concrete whose purpose is to lower environmental load in which cement and aggregates can be replaced with metakaolin which is natural material and copper slag which is industry by product.

A Study on Environment-Friendly Characteristics of campus buildings for creating a green campus (그린캠퍼스 조성을 위한 대학건물의 친환경적 특성에 관한 연구)

  • Jeong, Sook-In;Nam, Kyung-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.221-228
    • /
    • 2009
  • Recently severity of ecological adaptation and climatic change due to global warming grows larger. According to the fourth report of IPCC in 2007, emission quantity of the earth greenhouse gas(GHGs) generated by activity of mankind increased with 80% since 1970. And it is forecasted that worldwide greenhouse gas will be increased with 25~90%(corresponding to $CO_2$) between 2000 and 2030. This increment of greenhouse gas($CO_2$) is expected to raise average temperature of the earth with the maximum $6.4^{\circ}C$, and sea surface with 59cm in 2090. Like this, destruction of environment by greenhouse gas is regarded as universal problem threatening the existence, not only the problem of one nation. Consequently, systematic correspondence to the global warming at the aspect of energy consumption is also needed in Korea. From the analysis result of 'Statistics of Energy Consumption' published by Green Korea in 2007, energy consumption increment of domestic universities was higher as many as 3.7 times than 22.5% of the whole energy consumption increment in our country. This says to be the direct example which shows that universities are huge sources of greenhouse gas emission. New constructing and enlarging buildings of each universities within campus are the most major reason for such a large increment of energy consumption in universities. The opinion that the possibility of causing energy waste and efficiency reduction is raised by increased buildings of universities has been propounded. That is, universities should make concrete goal and the plan for reducing emission of green house gas against climatic change, and should practice. Accordingly, there is the meaning that 2 aspects of environment-friendly design characteristics, that is application of energy utilizing technology, material usage of energy efficiency-side and environment-side, and introduction of natural element in the environmental aspect, were analyzed for facilities of university campus designed in environment-friendly point of view from initial stage of plan, and direction of environment-friendly design of university facilities in the future was groped in order to grasp environment-friendly design tendency of internal and external University facilities based on this analysis of this paper.

A Sensibility Evaluation Study on Interior Space of Exposed Concrete Finish - Focused on the Kim Ok Gil Memorial Hall Restaurant - (노출 콘크리트 마감의 실내 공간 감성평가 연구 - 김옥길 기념관 레스토랑을 중심으로 -)

  • Lee, Jisun;Jung, Hyun-Won;Lee, Hyunsoo
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.5
    • /
    • pp.121-129
    • /
    • 2016
  • With the ingenious properties of unconstrained formativeness and frank expression of materiality the exposed concrete became popular with numerous architectures. The application of the exposed concrete has expanded to indoor environments such as commercial and residential spaces beyond the building exteriors with the uncompromising nature of its materiality. The purpose of this study is to conduct sensibility evaluation of the exposed concrete finish in interior spaces. The sensibility evaluation is conducted through a survey on a set of space models of the exposed concrete finish. The three rendered space models were evaluated by emotional vocabulary of 18 pairs of words. The result were as follows: First, the emotions derived from the exposed concrete finish are 'modern', 'cold', 'simple', 'restrained', 'rough', 'dark', 'new', 'chic', 'familiar' and 'eco-friendly'. Second, three sets of space models with alternative materials on walls and floors in exposed concrete interior space showed clear difference in sensibility. A space with the exposed concrete finish on the floor, the walls and the ceiling showed the results of 'cold', 'dark', 'rational' and 'masculine'. In the exposed concrete finish environment with wood flooring 'comfortable', 'warm', 'bright' senses and with white paint finish on the wall 'bright', 'practical', 'ordinary' and 'restrained' senses were obtained. Third, all three images achieved senses of 'chic', 'modern', 'new', 'pleasant', 'environment friendly' and 'satisfactory'. The modernity and stylish expressions of the exposed concrete finish were kept with the application of different material finishes as well as complementing its cold and rough expressions with warmth and brightness.