Acknowledgement
Supported by : Ningbo Science and Technology Bureau, National Research Foundation of Korea (NRF)
References
- Abd, A.M. and Abd, S.M. (2017), "Modelling the strength of lightweight foamed concrete using support vector machine (SVM)", Case Stud. Constr. Mater., 6, 8-15. https://doi.org/10.1016/j.cscm.2016.11.002
- ACI (American Concrete Institute) 211.2-04 (2004), Standard Practice for Selecting Proportions for Structural Lightweight Concrete, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- ACI (American Concrete Institute) C318-0843 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, Michigan, U.S.A.
- ASTM C127-04 (2004), Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM C128-07 (2007), Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM C150-05 (2005), Standard Specification for Portland Cement, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM, ASTM C31/C31M-06 (2007), Standard Practice for Making and Curing Concrete Test Specimens in the Field, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM, ASTM C39/C39-05 (2007), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM, ASTM C496/C496M-11 (2007), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Atici, U. (2011), "Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network", Exp. Syst. Appl., 38, 9609-9618. https://doi.org/10.1016/j.eswa.2011.01.156
- Attalla, M. and Hegazy, T. (2003), "Predicting cost deviation in reconstruction projects: Artificial neural networks versus regression", J. Constr. Eng. Manage., 129(4), 405-411. https://doi.org/10.1061/(ASCE)0733-9364(2003)129:4(405)
- Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 15, 142-161.
- Bentz, D.P. (2010), "Powder additions to mitigate retardation in high-volume fly ash mixtures", ACI Mater. J., 107(5), 508-514.
- Biernacki, J.J and Gottapu, M. (2015), "An advanced single-particle model for C3S hydration-validating the statistical independence of model parameters", Comput. Concrete, 15(6), 989-999. https://doi.org/10.12989/cac.2015.15.6.989
- Bogas, J.A., Brito, J. and Figueiredo, J.M. (2015), "Mechanical characterization of concrete produced with recycled lightweight expanded clay aggregate concrete", J. Clean. Prod., 89, 187-195. https://doi.org/10.1016/j.jclepro.2014.11.015
- Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Engineering properties of alkali-activated natural pozzolan concrete", ACI Mater. J., 108(1), 64-72.
- Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 242-253.
- Deepa, C., Sathiyakumari, K. and Sudha, V. (2010), "Prediction of the compressive strength of high performance concrete mix using tree based modelling", J. Comput. Appl. Technol., 6, 18-24.
- Demir, F. (2005), "A new way of prediction elastic modulus of normal and high strength concrete-fuzzy logic", Cement Concrete Res., 35, 1531-1538. https://doi.org/10.1016/j.cemconres.2005.01.001
- Dogan, S.Z., Arditi, D., and Gunaydin, H.M. (2006), "Determining attribute weights in a CBR model for early cost prediction of structural systems", J. Constr. Eng. M., 132(10), 1092-1098. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:10(1092)
- Duan, Z.H. and Poon, C.S. (2014), "Factors affecting the properties of recycled concrete by using neural networks", Comput. Concrete, 14(5), 547-561. https://doi.org/10.12989/cac.2014.14.5.547
- Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete compressive strength forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intell., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014
- Erdogan, Y.S. and Bakir, P.G. (2013), "Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem", Comput. Concrete, 11(6), 541-569. https://doi.org/10.12989/cac.2013.11.6.541
- Farahani, J.N., Shafigh, P., Alsubari, B., Shahnazar, S. and Mahmud, H.B. (2017), "Engineering properties of lightweight aggregate concrete containing binary and ternary blended cement", J. Clean. Prod., In Press.
- Grist, E.R., Paine, K.A., Heath, A., Norman, J. and Pinder, H. (2015), "The environmental credentials of hydraulic lime-pozzolan concretes", J. Clean. Prod., 93, 26-37. https://doi.org/10.1016/j.jclepro.2015.01.047
- Guo, S., Dai, Q., Si, R., Sun, X. and Lu, C. (2017), "Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire", J. Clean. Prod., 148, 681-689. https://doi.org/10.1016/j.jclepro.2017.02.046
- Haque, M.N., Kayali, O. and Al-Khaiat, H. (2002), "Structural lightweight concrete-an environmentally responsible material of construction", Proceedings of the International Challenges of Concrete Construction Congress, Scotland, U.K.
- Henry, M. and Kato, Y. (2014), "Understanding the regional context of sustainable concrete in Asia: Case studies in Mongolia and Singapore", Res. Conserv. Recycl., 82, 86-93. https://doi.org/10.1016/j.resconrec.2013.10.012
- Hossain, K.M.A and Lachemi, M. (2006), "Time dependent equations for the compressive strength of self-consolidating concrete through statistical optimization", Comput. Concrete, 3(4), 249-260. https://doi.org/10.12989/cac.2006.3.4.249
- Jin, R., Chen., Q. and Soboyejo, A. (2015), "Survey of the current status of sustainable concrete production in the U.S", Res. Conserv. Recycl., 105, 148-159. https://doi.org/10.1016/j.resconrec.2015.10.011
- Juncai, X., Qingwen, R. and Zhenzhong, S. (2015), "Prediction of the strength of concrete radiation shielding based on LS-SVM", Ann. Nucl. Energy., 85, 296-300. https://doi.org/10.1016/j.anucene.2015.05.030
- Kandasamy, S. and Akila, P. (2015), "Experimental analysis and modeling of steel fiber reinforced SCC using central composite design", Comput. Concrete, 15(2), 215-229. https://doi.org/10.12989/cac.2015.15.2.215
- Koo, C., Hong, T. and Hyun. C. (2011), "The development of a construction cost prediction model with improved prediction capacity using the advanced CBR approach", Exp. Syst. Appl., 38(7), 8597-8606. https://doi.org/10.1016/j.eswa.2011.01.063
- Koo, C., Hong, T. and Kim, J. (2014a), "A decision support system for determining the optimal size of a new expressway service area: Focused on the profitability", Dec. Supp. Syst., 67, 9-20. https://doi.org/10.1016/j.dss.2014.07.005
- Koo, C., Hong, T., Lee, M. and Park, H.S. (2013), "Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning", Environ. Sci. Technol., 47(9), 4829-4839. https://doi.org/10.1021/es303774a
- Koo, C., Hong, T., Lee, M. and Park, H.S. (2014b), "Development of a new energy efficiency rating system for existing residential buildings", Energy Pol., 68, 218-231.
- Langer, W.H. and Arbogast, B.F. (2002), Environmental Impact of Mining Natural Aggregate, Deposit and Geoenvironmental Models for Resource Exploitation and Environmental Security, U.S. Government, 151-170.
- Limbachiya, M., Meddah, M.S. and Ouchagour, Y. (2012), "Performance of Portland/silica fume cement concrete produced with recycled concrete aggregate", ACI Mater. J., 109, 91-100.
- Lowe, D.J., Emsley, M.W. and Harding, A. (2006), "Predicting construction cost using multiple regression techniques", J. Constr. Eng. Manage., 132(7), 750-758. https://doi.org/10.1061/(ASCE)0733-9364(2006)132:7(750)
- Mastali, M., Dalvand, A. and Fakharifar, M. (2016), "Statistical variations in the impact resistance and mechanical properties of polypropylene fiber reinforced self-compacting concrete", Comput. Concrete, 18(1), 113-137. https://doi.org/10.12989/cac.2016.18.1.113
- Mohammadhosseini, H. and Yatim, J.M. (2017a), "Microstructure and residual properties of green concrete composites incorporating waste carpet fibers and palm oil fuel ash at elevated temperatures", J. Clean. Prod., 144, 8-21. https://doi.org/10.1016/j.jclepro.2016.12.168
- Mohammadhosseini, H., Yatim, J.M., Sam, A.R.M. and Abdul Awal, A.S.M. (2017b), "Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash", J. Clean. Prod., 144, 448-458. https://doi.org/10.1016/j.jclepro.2016.12.151
- Muller, M. and Wiederhold, E. (2002), "Applying decision tree methodology for rules extraction under cognitive constraints", Eur. J. Oper. Res., 136, 282-289. https://doi.org/10.1016/S0377-2217(01)00115-1
- Ni, H. and Wang, J. (2000), "Prediction of compressive strength of concrete by neural networks", Cement Concrete Res., 30, 1245-1250. https://doi.org/10.1016/S0008-8846(00)00345-8
- Omran, B.A., Chen, Q. and Jin, R. (2016), "Comparison of data mining techniques for predicting compressive strength of environmentally friendly concrete", J. Comput. Civil Eng., 30(6).
- Phaobunjong, K. (2002), "Parametric cost estimating model for conceptual cost estimating of building construction projects", Ph.D. Dissertation, University of Texas, Austin, Texas, U.S.A.
- Rifat, S. (2004), "Conceptual cost estimation of building projects with regression analysis and neural networks", Can. J. Civil Eng., 31(2), 677-683. https://doi.org/10.1139/l04-029
- Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long-term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Constr. Build. Mater., 23, 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Shafigh, P., Nomeli, M.A., Alengaram, U.J., Mahmud, H.B. and Jumaat, M.Z. (2016), "Engineering properties of lightweight aggregate concrete containing limestone powder and high-volume fly ash", J. Clean. Prod., 135, 148-157. https://doi.org/10.1016/j.jclepro.2016.06.082
- Sheng, O.R.L., Wei, C.P., Hu, P.J.H. and Chang, N. (2000), "Automated learning of patient image retrieval knowledge: Neural networks versus inductive decision trees", Dec. Supp. Syst., 30, 105-124. https://doi.org/10.1016/S0167-9236(00)00092-0
- Tapali, J.G., Demis, S. and Papadakis, V.G. (2013). "Sustainable concrete mix design for a target strength and service life", Comput. Concrete, 12(6), 755-774. https://doi.org/10.12989/cac.2013.12.6.755
- Topcu, I.B. and Boga, A.R. (2010), "Effect of boron waste on the properties of mortar and concrete", Waste. Manage. Res., 28, 626-633. https://doi.org/10.1177/0734242X09345561
- Valipour, M., Shekarchi, M. and Arezoumandi, M. (2017), "Chlorine diffusion resistivity of sustainable green concrete in harsh marine environments", J. Clean. Prod., 142, 4092-4100. https://doi.org/10.1016/j.jclepro.2016.10.015
- Wang, H.Y., Hsiao, D.H. and Wang, S.Y. (2012), "Properties of recycled green building materials applied in lightweight aggregate concrete", Comput. Concrete, 10(2), 95-104. https://doi.org/10.12989/cac.2012.10.2.095
- Xiao, J., Li, L., Shen, L. and Poon, C.S. (2015), "Compressive behaviour of recycled aggregate concrete under impact loading", Cement Concrete Res., 71, 46-55. https://doi.org/10.1016/j.cemconres.2015.01.014
- Yan, K., Xu, H., Shen, G. and Liu, P. (2013), "Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine", Adv. Mater. Sci. Eng., 1-13.
- Yang, E.I., Yi, S.T. and Leem, Y.M. (2005), "Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties", Cement Concrete Res., 35, 2175-2182. https://doi.org/10.1016/j.cemconres.2005.03.016
- Yang, K.H., Jung, Y.B., Cho, M.S. and Tae, S.H. (2015), "Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete", J. Clean. Prod., 103, 774-783. https://doi.org/10.1016/j.jclepro.2014.03.018
- Yeh, I.C. (1998), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28, 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3