• Title/Summary/Keyword: environment sensor

Search Result 3,394, Processing Time 0.037 seconds

Design Construction of Test Bed for WSN and Effective Integral Test Simulation Settings (WSN을 위한 테스트베드와 가상환경의 효율적인 통합 테스트 시뮬레이션 환경 구축)

  • Park, Kyung-Joon;Choi, Dae-Dam;Seo, Min-Seok;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.584-596
    • /
    • 2013
  • WSN (Wireless Sensor Network), to take advantage of the range was gradually expanded. So WSN access from public network to the desire to be increased. As a result, the test network environment for research has been progressing steadily. Because it requires a lot of sensor nodes, to establish of Testbed for WSN is difficult. in this paper suggests efficient integration test simulation environment of Testbed and Virtual environment for WSN. In addition to this paper suggests simulation environment able to integration of simulation time of Testbed and NS-3.

Radar-based Security System: Implementation for Cluttered Environment

  • Lee, Tae-Yun;Skvortsov, Vladimir;Ka, Min-Ho
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.160-167
    • /
    • 2015
  • We present an experimental implementation of the inexpensive microwave security sensor that can detect both static and slowly moving objects in cluttered environment. The prototype consists of a frequency-modulated continuous wave radar sensor, control board or computer and software. The prototype was tested in a cluttered indoor environment. In case of intrusion or change of environment the sensor will give an alarm, determine the location of new object, change in its location and can detect a slowly moving target. To make a low-cost unit we use commercially available automotive radar and own signal processing techniques for object detection and tracking. The intruder detection is based on a comparison between current 'image' in memory and 'no-intrusion' reference image. The main challenge is to develop a reliable technique for detection of a relatively low-magnitude object signals hidden in multipath clutter echo signals. Various experimental measurements and computations have shown the feasibility and performance of the system.

Adaptive Success Rate-based Sensor Relocation for IoT Applications

  • Kim, Moonseong;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3120-3137
    • /
    • 2021
  • Small-sized IoT wireless sensing devices can be deployed with small aircraft such as drones, and the deployment of mobile IoT devices can be relocated to suit data collection with efficient relocation algorithms. However, the terrain may not be able to predict its shape. Mobile IoT devices suitable for these terrains are hopping devices that can move with jumps. So far, most hopping sensor relocation studies have made the unrealistic assumption that all hopping devices know the overall state of the entire network and each device's current state. Recent work has proposed the most realistic distributed network environment-based relocation algorithms that do not require sharing all information simultaneously. However, since the shortest path-based algorithm performs communication and movement requests with terminals, it is not suitable for an area where the distribution of obstacles is uneven. The proposed scheme applies a simple Monte Carlo method based on relay nodes selection random variables that reflect the obstacle distribution's characteristics to choose the best relay node as reinforcement learning, not specific relay nodes. Using the relay node selection random variable could significantly reduce the generation of additional messages that occur to select the shortest path. This paper's additional contribution is that the world's first distributed environment-based relocation protocol is proposed reflecting real-world physical devices' characteristics through the OMNeT++ simulator. We also reconstruct the three days-long disaster environment, and performance evaluation has been performed by applying the proposed protocol to the simulated real-world environment.

Extending Sensor Registry System Using Network Coverage Information (네트워크 커버리지를 이용한 센서 레지스트리 시스템 확장)

  • Jung, Hyunjun;Jeong, Dongwon;Lee, Sukhoon;Baik, Doo-Kwon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.425-430
    • /
    • 2015
  • The Sensor Registry System(SRS) provides sensor metadata to a user for instant use and seamless interpretation of sensor data in a heterogeneous sensor network environment. The existing sensor registry system cannot provide sensor metadata in case that the network connection is not available or is unstable. To resolve the problem, this paper proposes an extension of sensor registry system using network coverage information. The extended system sends a set of sensor metadata to the user by using network coverage open data (mobile vendors, signal strength, communication type). The extended SRS proposed in this paper supports a safer sensor metadata provision than the existing SRS, and it thus improves the quality of application services.

Intravenous Infusion Monitoring Sensor Based on Longitudinal Electric Field Proximity Sensing Technique (종방향 전기장 근접 감지 방식 수액 주입 측정 센서)

  • Kim, Young Cheol;Ahmad, Sheikh Faisal;Kim, Hyun Deok
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.101-106
    • /
    • 2017
  • A novel intravenous (IV) infusion monitoring sensor is presented to measure the drop rate in the drip chamber of an IV infusion set. It is based on a capacitive proximity sensor and detects the variation of the longitudinal electric field induced by the drop falling into the drip chamber. Unlike the conventional capacitor sensor with two semi-cylindrical conductor plates, the proximity sensor for IV monitoring is composed of a pair of conductor rings which are mounted on the outer surface of the drip chamber with a specific gap between them. The characteristics of the proximity sensor for IV monitoring were investigated through three dimensional electrostatic simulations. It showed quite superior performances in comparison with the conventional capacitor sensor. Especially, the proposed proximity sensor exhibits consistent sensitivity regardless of its mounting position on the drip chamber, operates normally though the drip chamber is tilted and shows robustness to the changes of the drop size and the drip factor of the IV infusion set. Thus, the proximity sensor for IV monitoring is more suitable for use in actual environment of IV therapy compared with the conventional capacitor sensor.

Novel Architecture of Self-organized Mobile Wireless Sensor Networks

  • Rizvi, Syed;Karpinski, Kelsey;Razaque, Abdul
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.4
    • /
    • pp.163-176
    • /
    • 2015
  • Self-organization of distributed wireless sensor nodes is a critical issue in wireless sensor networks (WSNs), since each sensor node has limited energy, bandwidth, and scalability. These issues prevent sensor nodes from actively collaborating with the other types of sensor nodes deployed in a typical heterogeneous and somewhat hostile environment. The automated self-organization of a WSN becomes more challenging as the number of sensor nodes increases in the network. In this paper, we propose a dynamic self-organized architecture that combines tree topology with a drawn-grid algorithm to automate the self-organization process for WSNs. In order to make our proposed architecture scalable, we assume that all participating active sensor nodes are unaware of their primary locations. In particular, this paper presents two algorithms called active-tree and drawn-grid. The proposed active-tree algorithm uses a tree topology to assign node IDs and define different roles to each participating sensor node. On the other hand, the drawn-grid algorithm divides the sensor nodes into cells with respect to the radio coverage area and the specific roles assigned by the active-tree algorithm. Thus, both proposed algorithms collaborate with each other to automate the self-organizing process for WSNs. The numerical and simulation results demonstrate that the proposed dynamic architecture performs much better than a static architecture in terms of the self-organization of wireless sensor nodes and energy consumption.

LOCATION UNCERTAINTY IN ASSET TRACKING USING WIRELESS SENSOR NETWORKS

  • Jo, Jung-Hee;Kim, Kwang-Soo;Lee, Ki-Sung;Kim, Sun-Joong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.357-360
    • /
    • 2007
  • An asset tracking using wireless sensor network is concerned with geographical locations of sensor nodes. The limited size of sensor nodes makes them attractable for tracking service, at the same time their size causes power restrictions, limited computation power, and storage restrictions. Due to such constrained capabilities, the wireless sensor network basically assumes the failure of sensor nodes. This causes a set of concerns in designing asset tracking system on wireless sensor network and one of the most critical factors is location uncertainty of sensor nodes. In this paper, we classify the location uncertainty problem in asset tracking system into following cases. First, sensor node isn't read at all because of sensor node failure, leading to misunderstanding that asset is not present. Second, incorrect location is read due to interference of RSSI, providing unreliable location of asset. We implemented and installed our asset tracking system in a real environment and continuously monitored the status of asset and measured error rate of location of sensor nodes. We present experimental results that demonstrate the location uncertainty problem in asset tracking system using wireless sensor network.

  • PDF

Detection the Biomedical Information using the Piezo Film Sensor (Piezo Film Sensor를 이용한 생체 정보 검출)

  • Lee, H.W.;Seo, H.;Jeong, W.G.;Jang, D.B.;Lee, G.K.
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.3
    • /
    • pp.14-21
    • /
    • 2010
  • For the ubiquitous healthcare environment, real-time measurement of biomedical signals and accuracy of the measured biomedical information are very important. In addition, it is important to develop a healthcare device with low power In this paper, the synchronized pulse in a heartbeat was detected from the radial artery using the piezo film sensor, in order to eliminate inconvenience to wear a pulse detection finger probe. We can get a best output after applying the adaptive noise canceller using two piezo film sensor signals, pulse signal having motion artifacts and motion artifacts reference signal. To detect heartbeat, we use maximum point detection method from pulse removed motion artifacts.

  • PDF

A Study on WSN based Low Power Fire Prevention System (무선 센서 네트워크 기반 저전력 화재방재 시스템을 위한 전송 프로토콜 연구)

  • Kim, Young-Hyuk;Lim, Il-Kwon;Li, Qi Gui;Kim, Myung-Jin;Lee, Jae-Kwang
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.535-538
    • /
    • 2010
  • In this paper, this study goal is development for WSN-based fire prevention systems of using temperature/humidity Sensor. So, distributed sensor nodes structural and packet transfer characteristics study for fire monitoring. Battery-operated wireless sensor networks is data transfer manner of multi-hop. WSN fire prevention system need to sensor nodes management and energy consumption of efficient adjust for sustained action. Thus, study with efficient energy consumption the normal WSN environment is not, characteristics for WSN fire prevention environment.

  • PDF

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.