• 제목/요약/키워드: entrained flow rate

검색결과 33건 처리시간 0.024초

Oxygen Transfer Characteristics of an Ejector Aeration System

  • Yang, Hei-Cheon;Park, Sang-Kyoo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권1호
    • /
    • pp.10-17
    • /
    • 2012
  • The objective of this study was to investigate the oxygen transfer characteristics of an ejector aeration system. In order to evaluate the oxygen transfer performance of the ejector aeration system, a comparative experiment was conducted on a conventional blower aeration system. The effect of entrained air flow rate and aerating water temperature on the oxygen transfer efficiency was investigated. The dissolved oxygen concentration increased with increasing entrained air flow rate, but decreased with increasing aerating water temperature for two aeration systems. The volumetric mass transfer coefficient increased with increasing entrained air flow rate and with increasing aerating water temperature for both aeration systems. The average mass transfer coefficient for the ejector aeration system was about 20% and 42% higher than that of the blower aeration system within the experimental range of entrained air flow rates and aerating water temperatures.

분류층 가스화기 벽면의 슬래그거동에 대한 비정상해석 모델 개발 (Development of transient-state simulation model for slag flow on the wall of an entrained coal gasifier)

  • 김무경;예인수;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.197-200
    • /
    • 2015
  • Understanding the slag flow behavior is important in an entrained coal gasifier for its influence of ash discharge and wall heat transfer rate. This study presents a new model to predict the transient behavior of the liquid and solid slag layers. Unlike the previous steady-state model, the solid slag layer was included in solving the governing equations in order to identify the temporal and spatial transformation between the solid-liquid slag, rather than treating the solid region as a boundary condition of the liquid layer. The performance of the new model was evaluated for changes in the slag deposition rate (${\pm}10%$) and gas temperature (${\pm}50K$) in a simple cylindrical gasifier. The results show that the characteristic times to reach a new steady-state ranged between 80 s to 180s for the changes in the two parameters. Because the characteristic times of the gasifier temperature and slag deposition rate by changes in the coal type and/or operating conditions would be almost instantaneous, the time-scale for the slag thickness at the bottom of the gasifier to stabilize was much larger.

  • PDF

고압 석탄 분류층 가스화기 전산유동에서 탈휘발 모델의 영향 평가 (Evaluation of devolatilization models in CFD for high-pressure entrained flow coal gasifier)

  • 예인수;박상빈;류창국;박호영;김봉근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2012
  • In an entrained flow coal gasifier, predicting the reaction behavior of pulverized coal particles requires detailed information on devolatilization, char gasification, gaseous reactions, turbulence and heat transfer. Among the input parameters, the rate of devolatilization and the composition of volatile species are difficult to determine by experiments due to a high pressure (~40 bar) and temperature (${\sim}1500^{\circ}C$). This study investigates the effect of devolatilization models on the reaction and heat transfer characteristics of a 300 MWe Shell coal gasifier. A simplified devolatilization model and advanced model based on Flashchain were evaluated, which had different volatiles composition and devolatilization rates. It was found that the tested models produce similar flow and reaction trends, but the simplified model slightly over-predict the temperature and wall heat flux near the coal inlets.

  • PDF

루버를 이용한 대형공장 내부 자 연환기유동 개선에 관한 연구 (Improvement for Natural Ventilation Flow inside a Large Factory Building Using Louver-t ype Ventilator)

  • 강종훈;이상준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.705-706
    • /
    • 2008
  • When heat generated inside a large factory building is not discharged due to a stagnant flow, the working environment of workers becomes worse and the cooling of high-temperature products such as hot-rolling coils is delayed. To investigate the natural ventilation inside a large factory building, experimental studies were carried out using wind-tunnel tests. The scale-down factory building models were placed in an atmospheric boundary layer (ABL) and the mean and fluctuating velocity fields were measured using a particle image velocimetry (PIV) technique. For the prototype factory model, the outdoor air is only entrained into the factory building through the one-third open windward wall, and stagnant flow is formed in the rear part of the target area. In order to improve the indoor ventilation environment of the factory building, three different louver-type ventilators were attached at the upper one-third open windward wall of the factory model. Among the three louver ventilators tested in this study, the ventilator model #3 with the outer louver (${\theta}_o$ = 90$^{\circ}$) and the inner louver (${\theta}_i$ = -70$^{\circ}$) was found to improve the natural ventilation inside the factory building model effectively. The flow rate of the entrained air was increased with aligning the outer louver blades with the oncoming wind and guiding the entrained air down to the ground surface with elongated inner louver blades.

  • PDF

200 t/d급 MHI 석탄 가스화기의 석탄 및 공기 배분에 따른 가스화 특성 평가 (Influence of coal and air flow rate distribution on gasification characteristics in 200 t/d scale MHI coal gasifier)

  • 도윤영;예인수;김봉근;류창국
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.93-96
    • /
    • 2015
  • Commercial coal gasifiers typically use entrained flow type reactors, but have unique features in terms of reactor shape, gasifying agent, coal feeding type, ash/slag discharge, and reaction stages. The MHI gasifier is characterized as air-blow dry-feed entrained reactor, which incorporates a short combustion stage at the bottom and a tall gasification stage above. This study investigates the flow and reaction characteristics inside a MHI gasifier by using computational fluid dynamics (CFD) in order to understand its design and operation features. For its pilot-scale system at 200 ton/day capacity, the distribution of coal and air supply between the two reaction stages was varied. It was found that the syngas composition and carbon conversion rate were not significantly influenced by the changes in the distribution of coal and air supply. However, the temperature, velocity and flow pattern changed sensitively to the changes in the distribution of coal and air supply. The results suggest that one key factor to determine the operational ranges of coal and air supply would be the temperature and flow pattern along the narrower wall between the two reaction stages.

  • PDF

분류층 석탄반응로에서 유동분포가 연소성능에 미치는 영향 (Effect of Flow Distribution on the Combustion Efficiency In an Entrained-Bed Coal Reactor)

  • 조한창;신현동
    • 대한기계학회논문집B
    • /
    • 제23권8호
    • /
    • pp.1022-1030
    • /
    • 1999
  • A numerical study was carried out to analyze the effect of flow distribution of stirred part and plug flow part on combustion efficiency at the coal gasification process in an entrained bed coal reactor. The model of computation was based on gas phase eulerian balance equations of mass and momentum. The solid phase was described by lagrangian equations of motion. The $k-{\varepsilon}$ model was used to calculate the turbulence flow and eddy dissipation model was used to describe the gas phase reaction rate. The radiation was solved using a Monte-Carlo method. One-step parallel two reaction model was employed for the devolatilization process of a high volatile bituminous Kideco coal. The computations agreed well with the experiments, but the flame front was closer to the burner than the measured one. The flow distribution of a stirred part and a plug flow part in a reactor was a function of the magnitude of recirculation zone resulted from the swirl. The combustion efficiency was enhanced with decreasing stirred part and the maximum value was found around S=1.2, having the minimum stirred part. The combustion efficiency resulted from not only the flow distribution but also the particle residence time through the hot reaction zone of the stirred part, in particular for the weak swirl without IRZ(internal recirculation zone) and the long lifted flame.

코안다 노즐을 이용한 배기가스 재순환 버너의 연소 유동 특성 및 NOx 저감에 관한 연구 (A Study on the Combustion Flow Characteristic and NOx Reduction of the Exhaust Gas Recurculation Burner using Coanda Nozzles)

  • 하지수
    • 한국가스학회지
    • /
    • 제21권3호
    • /
    • pp.53-60
    • /
    • 2017
  • 연소로에서 질소산화물을 저감하기 위하여 여러 가지 방법으로 연구가 진행되어 오고 있는데 그 중에 배기가스를 재순환하여 저감하는 방법이 있다. 본 연구는 배기가스를 재순환하는 방법으로 연소로 외부에 코안다 노즐을 이용하여 배기가스를 재순환 유입하는 방법을 사용하였다. 코안다 노즐을 이용하여 배기가스를 재순환하고 혼합가스는 연소로 접선 방향으로 투입하여 선회유동을 유발하는 특징을 가지는 배기가스 재순환 버너이다. 이러한 버너에서 연소로 내의 선회 유동 특성을 살펴보고 온도와 반응속도 분포를 살펴봄으로써 코안다 노즐을 이용한 재순환 버너의 연소 유동 특성을 규명하였다. 과잉공기계수와 코안다 노즐 간격을 변화하여 배기가스 재순환 유입량 특성을 살펴보았으며 과잉공기계수를 증가하면 재순환 유입량비가 증가하였고 코안다 노즐 간격을 증가하면 코안다 노즐 공기 출구에서 속도가 낮아져서 재순환 유입량이 감소한다는 특성을 알았다. 배기가스 출구에서 평균온도는 코안다 노즐 간격 변화에 거의 무관하며 과잉공기계수 증가에 따라 감소하는 것을 알았다. 이러한 특성으로 배기가스 출구에서 NOx 농도는 과잉공기계수 증가에 따라 현저히 감소하고 코안다 노즐 간격에는 상대적으로 영향이 적은 것으로 나타났다.

Development of droplet entrainment and deposition models for horizontal flow

  • Schimpf, Joshua Kim;Kim, Kyung Doo;Heo, Jaeseok;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.379-388
    • /
    • 2018
  • Models for the rate of atomization and deposition of droplets for stratified and annular flow in horizontal pipes are presented. The entrained fraction is the result of a balance between the rate of atomization of the liquid layer that is in contact with air and the rate of deposition of droplets. The rate of deposition is strongly affected by gravity in horizontal pipes. The gravitational settling of droplets is influenced by droplet size: heavier droplets deposit more rapidly. Model calculation and simulation results are compared with experimental data from various diameter pipes. Validation for the suggested models was performed by comparing the Safety and Performance Analysis Code for Nuclear Power Plants calculation results with the droplet experimental data obtained in various diameter horizontal pipes.

환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구 (Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop)

  • 이동엽;김윤기;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 - (Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.