• Title/Summary/Keyword: entire stress-strain curve

Search Result 12, Processing Time 0.019 seconds

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

  • Dinh, Ngoc-Hieu;Choi, Kyoung-Kyu;Kim, Hee-Seung
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.221-236
    • /
    • 2016
  • The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions ($V_f$) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.

Cyclic compressive loading-unloading curves of brick masonry

  • AlShebani, Milad M.;Sinha, S.N.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.375-382
    • /
    • 2000
  • Experimental investigation into the cyclic behaviour of sand plast brick masonry was performed on forty two square panels. The panels were subjected to cyclic uniaxial compression for two cases of loading: normal to bed joint and parallel to bed joint. Experimental data were used to plot the unloading-reloading curves for the entire range of the stress-strain curve. Mathematical expressions to predict the reloading and unloading stress-strain curves at various values of residual strain are proposed. A simple parabola and an exponential type formula are found adequate to model the unloading and reloading curves respectively. The models account for the potential effects of residual strain on these curves. Comparison of test results with the proposed mathematical expression shows good correspondence.

Study on the Estimation of Duncan & Chang Model Parameters-initial Tangent Modulus and Ultimate Deviator Stress for Compacted Weathered Soil (다짐 풍화토의 Duncan & Chang 모델 매개변수-초기접선계수와 극한축차응력 산정에 관한 연구)

  • Yoo, Kunsun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.47-58
    • /
    • 2018
  • Duncan & Chang(1970) proposed the Duncan-Chang model that a linear relation of transformed stress-strain plots was reconstituted from a nonlinear relation of stress-strain curve of triaxial compression test using hyperbolic theory so as to estimate an initial tangent modulus and ultimate deviator stress for the soil specimen. Although the transformed stress-strain plots show a linear relationship theoretically, they actually show a nonlinearity at both low and high values of strain of the test. This phenomenon indicates that the stress-strain curve is not a complete form of a hyperbola. So, if linear regression analyses for the transformed stress-strain plot are performed over a full range of strain of a test, error in the estimation of their linear equations is unavoidable depending on ranges of strain with non-linearity. In order to reduce such an error, a modified regression analysis method is proposed in this study, in which linear regression analyses for transformed stress-strain plots are performed over the entire range of strain except the range the non-linearity is shown around starting and ending of the test, and then the initial tangent modulus and ultimate deviator stresses are calculated. Isotropically consolidated-drained triaxial compression tests were performed on compacted weathered soil with a modified Proctor density to obtain their model parameters. The modified regression analyses for transformed stress-strain plots were performed and analyzed results are compared with results estimated by 2 points method (Duncan et al., 1980). As a result of analyses, initial tangent moduli are about 4.0% higher and ultimate deviator stresses are about 2.9% lower than those values estimated by Duncan's 2 points method.

Behavior of Concrete Confined with GFRP According to the Fiber Volume, Diameter and Length (복합소재 부재에서 섬유의 양과 시편의 크기에 따른 콘크리트 구속모델)

  • Lee, Myung;Lee, Sung-Woo;Choi, Seok-Hwan;Jung, Kyu-Sang;Lee, Young-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.471-478
    • /
    • 2004
  • The behavior of stocky concrete-filled glass fiber reinforced polymer(GFRP) tubes was studied experimentally and analytically The behavior is focused on the confining action of GRFP tube against concrete. In the experimental work, extensive tensile tests for GFRP tubes which have various fiber lay-out were conducted. And, also short length concrete filled GFRP tubes which have various tube thickness, diameter, and length were tested. In the analytical work, equations to describe the compressive stresses and strains at failure, as well as the entire stress-strain curve of the GFRP tubes were developed. A comparison between the experimental results and those of analytical results indicate that the proposed model provides satisfactory predictions for the compressive strengths, strains at failure, and stress-strain responses.

  • PDF

Characteristics of Shear Behavior of Remolded Nak-dong River Sandy Silt (재성형된 낙동강 모래질 실트의 전단거동 특성)

  • Kim Young-Su;Tint Khin Swe;Kim Dae-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.41-50
    • /
    • 2007
  • The results from normally consolidated isotropic drained and undrained triaxial compression tests (NCIU and NCID) on sand with high silt content were presented in this paper. The experiments were performed on specimens of Nak-dong River sand with 63% silt content under effective confined pressures, 100 kPa to 400 kPa. From test results, Sandy silt became initially compressive but eventually appeared to provide dilatancy response throughout the entire stress-strain curve The behavior of sandy silt was more difficult to characterize than that of clay and sand due to lower plastic characteristic. Especially, the samples exhibited dilatancy development during shear after failure. The shear behavior and shear strength parameters of sandy silt can be determined as stress-strain behaviors are described by the Mohr-Coulomb failure criterion. The shear behaviors were observed increasing dilatancy volume change tendency with strain-softening tendency after failure. In this paper, the behavior of dilatancy depends on not only sand content but also fine content with low-cohesion during shear in the samples of sandy silt.

A numerical analysis of compressive strength of rectangular concrete columns confined by FRP

  • Lin, Huei-Jeng;Liao, Chin-I;Yang, Chin
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.235-248
    • /
    • 2006
  • This investigation presents an analysis procedure for simulating the compressive behavior of a rectangular concrete column confined by fiber-reinforced plastic (FRP) under uniaxial load. That is, the entire stress-strain curve can be drawn through the present analysis procedure. The modified Mander's stress-strain model (Mander, et al. 1988) and finite element method are adopted in this analysis procedure. The numerical analysis results are compared with the experimental results to verify the accuracy of the analysis procedure. This study offers a useful analysis procedure of researching the compressive behavior of rectangular concrete columns confined by FRP. Two main parameters, the number of FRP layers and the radius of the round corners of a rectangular column, are investigated. The numerical results show that non-uniform stresses occur and reduce the sectional effective area owing to the geometry of the confined rectangular column. The stresses are concentrated at the corners of the rectangular column. Compressive strength of a rectangular column increases greatly because the number of FRP layers increase. The maximum predicted compressive stress of the rectangular column has approximately 10% error as compared to the experimental results. Comparing the numerical and experimental results demonstrates that the accuracy of this analysis procedure is credible. Besides, the stress-strain curves of the R30 models, which are rectangular concrete column with large radius of round corners, are almost bilinear. This calculated results conform to the expectation and show the present analysis procedure are more suitable than Mander's model (1988) to analyze the compressive behavior of the rectangular concrete column confined by FRP.

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

2D Image Numerical Correction Method for 2D Digital Image Correlation (2차원 DIC 기법 적용을 위한 2D 이미지 보정 수치 해석 기법)

  • Kim, Wonseop;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.391-397
    • /
    • 2017
  • Recently, digital image correlation (DIC) techniques have been used to measure dynamic deformation during tensile testing. The standard tensile test method measures the average displacement of the relevant specimen to calculate the true stress-strain curve. Therefore, the validity of the true stress curve is restricted to the stress incurred within the uniform stretching interval, i.e., the maximum stress corresponds to the starting point of the necking deformation. Alternatively, if DIC is used, the effective range of the strain and strain rate can be extended to the breaking point of the tensile specimen, because of the feasibility of measuring the local strain over the entire area of interest. Because of these advantages, many optical 3D measurement systems have been introduced and used in research and industry. However, the conventional 3D measurement systems are exceedingly expensive and time consuming. In addition, these systems have the disadvantage of a very large equipment size which makes their transport difficult. In this study, a 2D image correction method employing a 2D DIC measurement method in conjunction with a numerical analysis method is developed using a smartphone. The results of the proposed modified 2D DIC method yielded higher accuracy than that obtained via the 3D measurement equipment. In conclusion, it was demonstrated that the proposed 2D DIC and calibration methods yield accurate measurement results with low time costs.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.