• 제목/요약/키워드: enthalpy method

검색결과 247건 처리시간 0.027초

주조 해석을 위한 3차원 상변화 유한 요소 해석 프로그램 개발

  • 하성규;조성수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1997년도 제8회 학술강연회논문집
    • /
    • pp.147-159
    • /
    • 1997
  • 본 연구에서는 상변화 영역에서 열평형 방정식을 별도로 수식화하지 않고도 잠열의 영향을 고려할 수 있으며, 고상과 액상 그리고 2상 영역에서 동일한 형태의 방정식을 사용할 수 있는 엔탈피법을 이용하였다. 상변화 문제의 엔탈피법을 이용한 유한요소해석을 위하여 8개의 절점을 가지며, 각 절점에서 1개의 자유도를 가지는 3차원 육면체 요소가 개발되었다. 해법의 타당성과 해의 정확도를 검증하기 위하여 엄밀해가 존재하는 상변화 문제를 유한요소법으로 해석하고 그 결과를 비교 검토하였다. 연구 결과, 엔탈피법에 의한 유한요소해는 상변화 영역이 하나의 특정 온도인 경우는 물론 온도 구간으로 나타나는 경우에도 시간 증분과 요소수에 크게 영향을 받지 않고 안정된 해가 됨을 알 수 있었다. 검증된 요소를 이용하여 3차원 상변화 문제에 적용하여 해를 나타내었다.

  • PDF

고 고도에서의 화학적 변화를 수반하는 기체 유동에 대한 수치해석적 연구 (A numerical study on the chemically reacting flow at highly altitude)

  • 이진호;김현우;원성연
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.202-214
    • /
    • 2001
  • In this paper the upwind flux difference splitting Navier-Stokes method has been applied to study quasi one-dimensional nozzle flow and axisymmetric sphere-cone($5^{\circ}$) flow for the perfect gas, the equilibrium and the nonequilibrium chemically reacting hypersonic flow. The effective gamma(${ \tilde{\gamma}}$), enthalpy to internal energy ratio was used to couple chemistry with the fluid mechanics for equilibrium chemically reacting air. The influences of the various altitude(30km, 50km) at Mach number(15.0, 20.0) were investigated. The equilibrium shock position was located farthest downstream when compared with those of perfect gas in a quasi one-dimensional nozzle. The equilibrium shock thickness over the blunt body region was much thinner than that of perfect gas shock.

  • PDF

질소-산소계 시프염기 리간드의 합성과 전이금속(II) 착물의 안정도상수결정 (Synthesis of Schiff-Base Ligands and Determination of Stability Constants of Their Transition Metal(II) Complexes)

  • 김선덕;송찬익;김준광;김정성
    • 한국환경과학회지
    • /
    • 제13권9호
    • /
    • pp.835-843
    • /
    • 2004
  • N,N-bis(2-salicylaldehyde)dipropylenetriamine(5- Hsaldipn), N,N-bis( 5-bromosalicyl-aldehyde) dipropylenetriamine (5-Brsaldipn), N,N-bis(5-chlorosalicy laldehyde )dipropylene-triamine(5-Clsaldipn), N,N-bis(2-hydroxy- $5-methoxy-benzaldehyde)dipropylenetriamine(5-OCH_3saldipn)$ and N,N-bis (2-hydroxy-5-nitrobenzaldehyde)dipropylenetriamine $(5-NO_2saldipn)$ were synthesized and characterized by elemental analysis, infrared spectrometry, NMR spectrometry and mass spectrometry. Their proton dissociation constants were determined in 70% dioxane/30% water solution by potentiometric. Stability constants of the complexes between these ligands and the metal ions such as Cu(II), Ni(II) and Zn(II) were measured in dimethyl sulfoxide by a polarographic method. Stability constants for the ligands were in the order of $5-OCH_3$ > 5-H > 5-Br > 5-Cl > $5-NO_2$ saldipn. Enthalpy and entropy changes were obtained in negative values.

하이드레이트 펠릿의 비평형 분해과정 수치해석 (NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION)

  • 강정호;남진현;김찬중;송명호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

하이드레이트 펠릿의 비평형 분해과정 수치해석 (NUMERICAL ANALYSIS OF NON-EQUILIBRIUM HYDRATE PELLET DECOMPOSITION)

  • 강정호;남진현;김찬중;송명호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.268-275
    • /
    • 2008
  • The prediction of hydrate pellet decomposition characteristics is required to design the regasification process of GTS (gas to solid) technology, which is considered as an economic alternative for LNG technology to transport natural gas produced from small and stranded gas wells. Mathematical model based on the conservation principles, the phase equilibrium relation, equation of gas state and phase change kinetics was set up and numerical solution procedure employing volume averaged fixed grid formulation and extended enthalpy method are implemented. Initially, porous methane hydrate pellet is at uniform temperature and pressure within hydrate stable region. The pressure starts to decrease with a fixed rate down to the final pressure and is kept constant afterwards while the bounding surface of pellet is heated by convection. The predicted convective heat and mass transfer accompanied by the decomposed gas flow through hydrate/ice solid matrix is reported focused on the comparison of spherical and cylindrical pellets having the same effective radius.

  • PDF

Multi-Cellular Natural Convection in the Melt during Convection- Dominated Melting

  • Kim, Sin;Kim, Min-Chan
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.94-101
    • /
    • 2002
  • Convection-dominated melting in a rectangular cavity is analyzed numerically with particular attention to the multi-cellular flows in the melt. At the earlier stage of the melting, the melt region is quite similar to a cavity with high aspect rati71, where the multi-cellular natural convection appears. Numerical results show that the formation and evolution of the multiple flow cells in the melt region is approximately similar to t]tat of a single-phase flow in a tall cavity with the same aspect ratio; however, the continuous change of the melt region due to the melting affects the detailed process. Also, numerical aspects for the prediction of the detailed flow structure in the melt are discussed.

N,N'-Oxalylbis(salicylaldehyde hydrazone)과 중금속이온과의 착물 형성에 관한 연구 (A Study on Complex Formation of Heavy Metal Ions with N,N'-Oxalybis(salicylaldehyde hydrazone))

  • 최규성;이익희;김용남
    • 대한화학회지
    • /
    • 제35권2호
    • /
    • pp.135-141
    • /
    • 1991
  • N,N'-oxalylbis(salicylaldehyde hydrazone) (OBSH)과 Zn (II), Cd (II) 및 Pb(II) 이온들과의 착물 형성에 따르는 안정도상수를 DMSO 용액에서 폴라로그래피법으로 측정하였다. 안정도상수의 크기는 Cd(II) < Zn(II) < pb(II) 이온의 순서로 증가하였으며, 모든 중금속이온들의 OBSH 리간드와 매우 안정한 착물을 형성하였다. 안정도상수를 여러 온도에서 측정하여 엔탈피 및 엔트로피 변화를 구한 결과, 착물의 안정도에 많은 기여를 하고 있음을 알았다.

  • PDF

3차원 비점성 천음속 익렬 유동에 관한 수치해석적 연구 (A numerical Analysis on Three-Dimensional Inviscid Transonic Cascade Flow)

  • 이훈구;유정열
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.336-347
    • /
    • 1992
  • The three dimensional inviscid transonic cascade flow was investigated numerically, incorporation a four stage Runge-Kutta integration method proposed by Jameson. Time marching to the steady state was accelerated by using optimum time step and enthalpy damping. In describing the boundary conditions at inlet and outlet, Riemann invariants are considered. By adding a second and a fourth order artificial viscocities, the numerical instability due to the propagation of undamped disturbance or the rapid change of state near the shock has been prevented. The numerical results for are bump cascade, cambered two dimensional turbine cascade and three dimensional stator cascade agreed reasonably well with previous results. It has been known that the accuracy of the solution depended a lot on the modeling of the leading or trailing edge.

전산수치해석을 통한 가스차단기의 차단성능 평가 (Evalution of Current interrupting capability in GCB by computational approach)

  • 최영길;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1677-1681
    • /
    • 2002
  • A computational approach of the arc quenching process in GCB was developed. it is capable to calculates the thermodynamic quantities of the gas as a function of time taking into account of all spaces concerned with the arc quenching. Basically using so-called FLIC method, this program adoptes 'Simplified Enthalpy Arc Model', which is somewhat modified. And, to examine whether our works were done properly, it was simulated the whole process of the arc quenching that is based on self-flow generation phenomena/current interruption in a thermal expansion type circuit breaker. This program was verified by experiments, both showed fairly good agreement.

  • PDF

선회분류 연소기의 연소특성에 관한 연구 (A Study on the Combustion Characteristics of Swirling Jet Combustor)

  • 심순용;손강호;이창식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.492-501
    • /
    • 1994
  • This study is an analysis of the turbulent diffusion flame with swirl flow and the calculated results are compared with experimental data in case of various swirl numbers and air-fuel rations. The mathematical model is restricted to single-phase, diffusion controlled combustion with swirl flow. Values of local flow properties were obtained by solving appropriate differential equation for continuity, momentum, stagnation enthalpy, concentration, turbulence energy, dissipation rate of turbulence energy, and the mean square of concentration fluctuation. The method is proposed for calculating the local probability of chemical reaction based on the use of the probability density function for the mixture fraction.