The primary strength of the enriched finite element method (enriched FEM) is its ability to enhance solution accuracy without mesh refinement. It also allows for the selective determination of cover function degrees based on desired accuracy. Furthermore, there is an adaptive enrichment strategy that applies enriched elements to targeted areas where accuracy may be lacking rather than across the entire domain, demonstrating its powerful use in engineering applications. However, its application to solid and structural problems encounters a linear dependence (LD) issue induced by using polynomial functions as cover functions. Recently, enriched finite elements that address the LD problem in linear analysis have been developed. In light of these advancements, this study is devoted to a robust extension of the enriched FEM to nonlinear analysis. We propose a nonlinear formulation of the enriched FEM, employing 3-node and 4-node 2D solid elements for demonstration. The formulation employs a total Lagrangian approach, allowing for large displacements and rotations. Numerical examples demonstrate that the enriched elements effectively improve solution accuracy and ensure stable convergence in nonlinear analysis. We also present results from adaptive enrichment to highlight its effectiveness.
In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.
In this paper, we propose an automatic procedure to improve the accuracy of finite element solutions using enriched 2D solid finite elements (4-node quadrilateral and 3-node triangular elements). The enriched elements can improve solution accuracy without mesh refinement by adding cover functions to the displacement interpolation of the standard elements. The enrichment scheme is more effective when used adaptively for areas with insufficient accuracy rather than the entire model. For given meshes, an error for each node is estimated, and then proper degrees of cover functions are applied to the selected nodes. A new error estimation method and cover function selection scheme are devised for the proposed adaptive enrichment scheme. Herein, we demonstrate the proposed enrichment scheme through several 2D problems.
The Enriched Free Mesh Method (EFMM) is a patch-wise procedure in which both a displacement field on an element and a stress/strain field on a cluster of elements connected to a node can be defined. On the other hand, the Superconvergent Patch Recovery (SPR) is known to be an efficient post-processing procedure of the finite element method to estimate the error norm at a node. In this paper, we discuss the relationship between solutions of the EFMM and those of the SPR through several convergence studies. In addition, in order to solve the demerit of the smoothing effect on the fracture mechanics fields, we implement a singular stress field to a local patch in the EFMM, and its effectiveness is investigated.
This paper presents a modeling technique of cracks by combined extended and superposed finite element method (XSFEM) which is a combination of the extended finite element method (XFEM) and the mesh superposition method (sversion FEM). In the proposed method, the near-tip field is modeled by a superimposed patch consisting of quarter point elements and the rest of the discontinuity is treated by the XFEM. The actual crack opening in this method is measured by the sum of the crack openings of XFEM and SFEM in transition region. This method retains the strong point of the XFEM so it can avoid remeshing in crack evolution and trace the crack growth by translation or rotation of the overlaid mesh and the update of the nodes to be enriched by step functions. Moreover, the quadrature of the Galerkin weak form becomes simpler. Numerical experiments are provided to demonstrate the effectiveness and robustness of the proposed method.
In this paper, a multi-scale meshfree-enriched finite element formulation is presented for the analysis of acoustic wave propagation problem. The scale splitting in this formulation is based on the Variational Multi-scale (VMS) method. While the standard finite element polynomials are used to represent the coarse scales, the approximation of fine-scale solution is defined globally using the meshfree enrichments generated from the Generalized Meshfree (GMF) approximation. The resultant fine-scale approximations satisfy the homogenous Dirichlet boundary conditions and behave as the "global residual-free" bubbles for the enrichments in the oscillatory type of Helmholtz solutions. Numerical examples in one dimension and two dimensional cases are analyzed to demonstrate the accuracy of the present formulation and comparison is made to the analytical and two finite element solutions.
Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.
A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.
We present in this paper a finite element formulation for nonlinear torsional analysis of 3D beams with arbitrary composite cross-sections. Since the proposed formulation employs a continuum mechanics based beam element with kinematics enriched by the extended St. Venant solutions, it can precisely account higher order warping effect and its 3D couplings. We propose a numerical procedure to calculate the extended St. Venant equation and the twisting center of an arbitrary composite cross-section simultaneously. The accuracy and efficiency of the proposed formulation are thoroughly investigated through representative numerical examples.
최근에 요소망의 재구성이 불필요하고 균열의 가시화에 강점을 가지는 확장유한요소법(XFEM)을 이용한 균열 해석이 많이 연구되고 있지만 주로 단일재료로 이루어진 부재의 해석에 집중되어 있다. 본 논문에서는 복합재료 부재인 철근콘크리트 보의 다중균열 해석에 확장유한요소법을 적용하며 그 적용성과 타당성을 살펴보았다. 확장유한요소해석 기능이 탑재된 상용 해석프로그램인 ABAQUS를 사용하여 균열해석을 수행하였으며 그 결과를 실험결과와 비교하였다. 확장유한요소법에서 인접요소에 동시에 균열이 발생할 경우 균열의 불연속성이 나타나지 않은 부가자유도 잠김 현상을 발견하였고 이에 대한 원인과 그 해결방안을 제시하였다. 또한 실험결과와 유사한 다중균열 발생을 위한 모델링 기법도 제시하였다. 확장유한요소법을 이용한 해석결과는 실험결과와 유사한 균열 양상 및 균열 간격을 보여 주었으며 하중-변위 관계에 있어서도 실험에 근접한 결과를 보여 주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.