• 제목/요약/키워드: enhanced genetic algorithm

검색결과 82건 처리시간 0.026초

유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구 (Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections)

  • 김중효;신재만;박제진;하태준
    • 대한토목학회논문집
    • /
    • 제30권4D호
    • /
    • pp.351-360
    • /
    • 2010
  • 2010년 말 현재 우리나라의 자동차등록대수는 1,748만 대에 육박할 정도로 비약적인 증가를 보이고 있다. 자동차의 급격한 증가는 오늘날 우리가 직면한 심각한 사회문제 중 하나인 교통사고를 증가시키고, 이로 인해 인명피해 및 경제적 손실을 초래하고 있다. 이에 본 연구는 유전자 알고리즘과 신경망 이론의 결합에 의한, 향상된 신호교차로 위험도를 예측하는 모형을 개발하여, 장래 교통사고 안전대책 수립시 근간이 되는 기초자료를 제공함으로써, 교통사고를 줄이는데 도움이 되고자 한다. 본 연구에서는, 첫 번째로 교통사고와 교통혼잡이 빈번하게 발생하는 신호교차로를 대상으로 접근로별 교통량과 도로 기하구조 요소를 파악하였고, 교통사고와 교통상충간의 순위상관관계분석을 실시하여 통계적 유의성을 파악하였으며, 교통사고와 교통상충을 적용한 선형회귀모형을 구축하였다. 두 번째로, 유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형은 신호교차로 교통량 및 도로 기하구조 요소, 교통상충의 특성변수를 적용하여 개발하였다. 마지막으로, 신호교차로 교통사고건수 실측값과 개발모형의 예측값에 대한 적합도 분석을 통해 신뢰수준을 검증한 결과, 개발모형의 신뢰도와 정확도가 기존의 모형에 비해 우수한 것으로 나타났다. 결론적으로, 향후 본 연구를 통해 개발된 교통사고위험도 예측모형을 신호교차로 교통안전정책 수립과 교통안전개선사업에 사용할 경우, 전반적으로 교통안전관련사업의 비용/효율성을 극대화할 수 있을 것으로 기대된다.

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Toward global optimization of case-based reasoning for the prediction of stock price index

  • Kim, Kyoung-jae;Ingoo Han
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 춘계정기학술대회
    • /
    • pp.399-408
    • /
    • 2001
  • This paper presents a simultaneous optimization approach of case-based reasoning (CBR) using a genetic algorithm(GA) for the prediction of stock price index. Prior research suggested many hybrid models of CBR and the GA for selecting a relevant feature subset or optimizing feature weights. Most studies, however, used the GA for improving only a part of architectural factors for the CBR system. However, the performance of CBR may be enhanced when these factors are simultaneously considered. In this study, the GA simultaneously optimizes multiple factors of the CBR system. Experimental results show that a GA approach to simultaneous optimization of CBR outperforms other conventional approaches for the prediction of stock price index.

  • PDF

이종망 환경에서 능동 안테나 시스템 기반의 셀간 간섭 제어 방법 (Inter-cell Interference Coordination Method Based on Active Antenna System in Heterogeneous Networks)

  • 김병준;박해성;김덕경
    • 한국통신학회논문지
    • /
    • 제39A권9호
    • /
    • pp.548-556
    • /
    • 2014
  • 최근 급증하는 데이터 트래픽에 효율적으로 대응하기 위해 매크로 기지국 영역에 매크로 기지국과 같은 주파수를 사용하는 소형 기지국이 공존하는 이종망에 관한 연구가 활발하게 진행 중이다. 이때, 매크로셀로부터 소형셀로의 간섭을 줄이기 위해 시간 영역에서 ABS (Almost Blank Subframe)을 이용한 enhanced Inter-cell Interference Coordination (eICIC) 기법이 제안되어 있다. 그러나 간섭 문제 해결을 위해 데이터를 전송하지 않는 서브프레임들이 발생함으로써 매크로셀 입장에서는 자원 낭비 문제가 발생한다. 본 논문에서는 능동 안테나 시스템 (AAS)과 Genetic Algorithm (GA)을 이용하여 소형 셀 방향으로 안테나 이득을 줄인 매크로 기지국의 3D 섹터 빔을 형성하여 셀간의 간섭신호 세기가 감소 되도록 하고 데이터 전송에 모든 서브프레임을 이용하여 낭비되는 자원이 없도록 한다. LTE -Advanced 시스템 레벨 시뮬레이터를 통해 기존 eICIC 기법과의 성능을 비교 분석하며, 제안된 기법의 성능 향상을 확인한다.

유전알고리즘을 이용한 신경망 구조 및 파라미터 최적화 (Neural Network Structure and Parameter Optimization via Genetic Algorithms)

  • 한승수
    • 한국지능시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.215-222
    • /
    • 2001
  • 신경망은 선형 시스템뿐만 아니라 비선형 시스템에 있어서도 탁월한 모델링 및 예측 성능을 갖고 있다. 하지만 좋은 성능을 갖는 신경망을 구현하기 위해서는 최적화 해야할 파라미터들이 있다. 은닉층의 뉴런의 수, 학습율, 모멘텀, 학습오차 등이 그것인데 이러한 파라미터들은 경험에 의해서, 또는 문헌들에서 제시하는 값들을 선택하여 사용하는 것이 일반적인 경향이다. 하지만 신경망의 전체적인 성능은 이러한 파라미터들의 값에 의해서 결정되기 때문에 이 값들의 선택은 보다 체계적인 방법을 사용하여 구하여야 한다. 본 논문은 유전 알고리즘을 이용하여 이러한 신경망 파라미터들의 최적 값을 찾는데 목적이 있다. 유전 알고리즘을 이용하여 찾은 파라미터들을 사용하여 학습된 신경망의 학습오차와 예측오차들을 심플렉스 알고리즘을 이용하여 찾는 파라미터들을 사용하여 학습된 신경망의 오차들과 비교하여 본 결과 유전 알고리즘을 이용하여 찾을 파라미터들을 이용했을 때의 신경망의 성능이 더욱 우수함을 알 수 있다.

  • PDF

A response surface modelling approach for multi-objective optimization of composite plates

  • Kalita, Kanak;Dey, Partha;Joshi, Milan;Haldar, Salil
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.455-466
    • /
    • 2019
  • Despite the rapid advancement in computing resources, many real-life design and optimization problems in structural engineering involve huge computation costs. To counter such challenges, approximate models are often used as surrogates for the highly accurate but time intensive finite element models. In this paper, surrogates for first-order shear deformation based finite element models are built using a polynomial regression approach. Using statistical techniques like Box-Cox transformation and ANOVA, the effectiveness of the surrogates is enhanced. The accuracy of the surrogate models is evaluated using statistical metrics like $R^2$, $R^2{_{adj}}$, $R^2{_{pred}}$ and $Q^2{_{F3}}$. By combining these surrogates with nature-inspired multi-criteria decision-making algorithms, namely multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO), the optimal combination of various design variables to simultaneously maximize fundamental frequency and frequency separation is predicted. It is seen that the proposed approach is simple, effective and good at inexpensively producing a host of optimal solutions.

Designing a Vehicles for Open-Pit Mining with Optimized Scheduling Based on 5G and IoT

  • Alaboudi, Abdulellah A.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권3호
    • /
    • pp.145-152
    • /
    • 2021
  • In the Recent times, various technological enhancements in the field of artificial intelligence and big data has been noticed. This advancement coupled with the evolution of the 5G communication and Internet of Things technologies, has helped in the development in the domain of smart mine construction. The development of unmanned vehicles with enhanced and smart scheduling system for open-pit mine transportation is one such much needed application. Traditional open-pit mining systems, which often cause vehicle delays and congestion, are controlled by human authority. The number of sensors has been used to operate unmanned cars in an open-pit mine. The sensors haves been used to prove the real-time data in large quantity. Using this data, we analyses and create an improved transportation scheduling mechanism so as to optimize the paths for the vehicles. Considering the huge amount the data received and aggregated through various sensors or sources like, the GPS data of the unmanned vehicle, the equipment information, an intelligent, and multi-target, open-pit mine unmanned vehicle schedules model was developed. It is also matched with real open-pit mine product to reduce transport costs, overall unmanned vehicle wait times and fluctuation in ore quality. To resolve the issue of scheduling the transportation, we prefer to use algorithms based on artificial intelligence. To improve the convergence, distribution, and diversity of the classic, rapidly non-dominated genetic trial algorithm, to solve limited high-dimensional multi-objective problems, we propose a decomposition-based restricted genetic algorithm for dominance (DBCDP-NSGA-II).

유전 알고리즘 및 담금질 기법을 활용한 Type 4 복합재료 압력용기 최적화 프로세스 (Optimization Process of Type 4 Composite Pressure Vessels Using Genetic and Simulated Annealing Algorithm)

  • 송귀남;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제32권4호
    • /
    • pp.212-218
    • /
    • 2021
  • In this study, we conducted a design optimization of the Type 4 composite pressure vessels to enhance the pressure-resistant performance of the vessels while keeping the thickness of the composite layer. The design variables for the optimization were the stacking angles of the helical layers of the vessels to improve the performance. Since the carbon fibers are expensive material, it is desirable to reduce the use of the carbon fibers by applying an optimal design of the composite pressure vessel. The structural analysis and optimization process for the design of Type 4 composite pressure vessels were carried out using a commercial finite element analysis software, Abaqus and a plug-in for automated simulation, Isight, respectively. The optimization results confirmed the performance and safety of the optimized Type 4 composite pressure vessels was enhanced by 12.84% compared to the initial design.

깊이 일관성을 보존하는 향상된 개체군기반 증가 학습을 이용한 고속 3차원 모델 추출 기법 (Fast 3D Model Extraction Algorithm with an Enhanced PBIL of Preserving Depth Consistency)

  • 이행석;장명호;한규필
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권1_2호
    • /
    • pp.59-66
    • /
    • 2004
  • 본 논문에서는 2차원 영상에서 3차원 깊이정보를 추출하기 위해서 진화연산 알고리즘을 적용한 고속 3차원 모델 추출 기법을 제안한다. 진화연산 알고리즘은 자연 선택과 개체군 유전학에 기반 한 생물학적 진화 과정을 통해 최적의 해를 찾는 효율적인 탐색 기법이다. 기존의 스테레오 정합 방법에서 생성되어진 2차원 깊이 정보인 변이 맵은 경계 부근에서 애매한 결과를 도출함으로써 변이의 세밀하고 정확한 정보를 잃어 실 영상과는 다소 차이를 갖는다. 본 논문에서는 소형 유전자 알고리즘을 스테레오 정합환경에 맞게 변형시키고, 생성된 변이 맵의 모호성을 해결하기 위해 이전 세대의 변이 맵으로부터 경계를 검출한 변이 경계정보에서 이웃한 화소의 변이 복잡도를 측정하여 복잡도에 따라 적응적 윈도우를 결정하여 정합에 사용하였다. 실험을 통해 제안한 방식이 이완 처리를 포함한 기존의 정합 방식보다 변이 맵 생성에 있어 보다 상세하고 매끄러운 변이 결과를 얻을 수 있었다.

RCGKA를 이용한 최적 퍼지 예측 시스템 설계 (Design of the Optimal Fuzzy Prediction Systems using RCGKA)

  • 방영근;심재선;이철희
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.9-15
    • /
    • 2009
  • In the case of traditional binary encoding technique, it takes long time to converge the optimal solutions and brings about complexity of the systems due to encoding and decoding procedures. However, the ROGAs (real-coded genetic algorithms) do not require these procedures, and the k-means clustering algorithm can avoid global searching space. Thus, this paper proposes a new approach by using their advantages. The proposed method constructs the multiple predictors using the optimal differences that can reveal the patterns better and properties concealed in non-stationary time series where the k-means clustering algorithm is used for data classification to each predictor, then selects the best predictor. After selecting the best predictor, the cluster centers of the predictor are tuned finely via RCGKA in secondary tuning procedure. Therefore, performance of the predictor can be more enhanced. Finally, we verifies the prediction performance of the proposed system via simulating typical time series examples.

  • PDF