Journal of information and communication convergence engineering
/
제22권3호
/
pp.249-255
/
2024
Advancements in deep learning have enhanced vision-based aggregate analysis. However, further development and studies have encountered challenges, particularly in acquiring large-scale datasets. Data collection is costly and time-consuming, posing a significant challenge in acquiring large datasets required for training neural networks. To address this issue, this study introduces a simulation that efficiently generates the necessary data and labels for training neural networks. We utilized a genetic algorithm (GA) to create optimized lists of aggregates based on the specified values of weight and particle size distribution for the aggregate sample. This enabled sample data collection without conducting sieving tests. Our evaluation of the proposed simulation and GA methodology revealed errors of 1.3% and 2.7 g for aggregate size distribution and weight, respectively. Furthermore, we assessed a segmentation model trained with data from the simulation, achieving a promising preliminary F1 score of 78.18 on the actual aggregate image.
본 논문은 최단 경로 라우팅 문제의 해결을 위한 새로운 방식의 유전자 알고리즘(Genetic Algorithm)을 제안한다. 이를 위해 가변길이(variable-length) 염색체(chromosome) 구조와 그에 따른 유전자 부호화(genes coding) 기법을 설계하고, 부분 염색체(partial-chromosome)를 교환하는데 있어서 교차점(crossing-site)에 의존성이 없는 교배(crossover) 기법과 개체군(population)의 다양성(diversity)을 유지하는 돌연변이(mutation) 기법을 개발한다. 또한, 모든 부적합(infeasible) 염색체를 간단하게 치료할 수 있는 복구 함수(repair function)를 제안한다. 제안 교배 기법과 돌연변이 기법의 상호 동작은 제안 알고리즘이 개체군의 다양성을 유지하면서 해-표면(solution-surface)을 효과적으로 탐색할 수 있도록 하여 해의 최적성(optimality) 및 수렴(convergence) 속도의 향상을 도모한다. 제안 알고리즘에 의해 계산된 경로의 최적성은 유전자 알고리즘을 이용하는 기존의 알고리즘보다 우수하고, 수렴 속도도 빠르다는 것을 컴퓨터 시뮬레이션을 통해 확인한다. 이 결과는 대부분의 출발지와 도착지 쌍에 대해 기존의 유전자 알고리즘 기반의 최단 경로 라우팅 알고리즘에 비해 네트워크 토폴로지에 비교적 덜 민감한 것으로 나타난다.
본 논문에서는 유전 알고리즘(genetic algorithm)을 이용하여 이중대역 다이폴 배열(dipole array) 안테나의 설계 및 최적화 문제에 대해서 고찰하였다. 다이폴로 구성된 이중대역, 개구면 공유형 선형 배열은 4 GHz와 9.5 GHz에서 동작하도록 설계하였다. 또한, 다이폴의 전류 분포는 모멘트 기법(method of moment)을 이용하여 계산되었으며, 계산 과정에서 다이폴 간 상호 결합(mutual coupling)을 고려하였다. 두 공진 주파수 대역에서 낮은 부엽 준위를 도출하기 위해서 비주기 다이폴 배열 설계에 유전 알고리즘을 적용하였고, 최적 설계된 이중대역 다이폴 배열 안테나는 4 GHz와 9.5 GHz에서 각각 -15.7 dB, -17 dB로 낮은 PSL 특성을 나타내었다. 또한, 이 결과를 상용 시뮬레이션 결과와 비교 분석하였다.
감염된 미생물에서 유래한 단백질 펩타이드가 HLA에 결합하여 숙주의 세포표면에 제시되면, T 세포가 이를 인식하여 면역반응을 유발함으로써 감염원을 제거하게 된다. HLA와 펩타이드간의 결합이 안정적일수록 T 세포반응이 강하게 일어나 효율적으로 감염원을 제거할 수 있다고 알려져 있다. 따라서 특정 HLA에 안정적으로 결합할 수 있는 펩타이드(HLA binder)를 찾아낼 수 있다면 감염질환이나 암의 예방을 위한 펩타이드 백신의 개발에 활용될 수 있다. 그런데 HLA는 매우 다형하기 때문에 하나의 집단 내에서도 어느 정도의 빈도를 가지는 대립유전자의 수가 매우 많다. 따라서 이들 모든 대립유전자들에 대해 가능한 펩타이드조합을 제작한 후 직접 실험을 통해 안정적으로 결합하는 펩타이드를 찾아내는 것은 매우 비효율적이다. 이를 극복하기 위하여 특정 HLA에 안정적으로 결합하는 펩타이드를 예측하는 정보전산적인 방법이 최근 개발되어 왔다. 이들 방법을 통해 제시된 펩타이드에 대해서만 직접 생물학적 실험을 시행함으로써 연구자는 검증해야 할 후보 펩타이드의 수를 현격히 감소시킬 수 있게 된다. 본 논문에서는 HLA 결합 펩타이드 예측을 위해 기계학습을 이용한 방법을 소개할 뿐만 아니라, 지금까지 HLA 결합 펩타이드 예측에 시도된 적이 없는 '지식기반 유전자 알고리즘(knowledge-based genetic algorithm)'이라는 새로운 모델을 제시하고자 한다. 이것은 유전자알고리즘(GA)에 기반한 것이었지만 전문가 지식을 접목함으로써 GA보다 더 향상된 성능으로 한국인에 흔한 HLA에 결합하는 펩타이드를 예측하였다. 뿐만 아니라 이것은 결합하는 펩타이드의 규칙을 한국인에 흔한 HLA 대립유전자에 대하여 추출해 줄 수 있는 새로운 방법이었다.
Journal of the Korean Data and Information Science Society
/
제20권6호
/
pp.1049-1060
/
2009
국내 금융시장의 변동성의 확대는 개인투자자들의 직접투자를 어렵게 만들면서 펀드를 통한 간접 투자 비중을 증가시켰다. 본 연구의 목적은 여러 가지 형태의 펀드 중에서도 인덱스펀드를 바탕으로 초과수익을 추구하는 인핸스드 인덱스 펀드 모델을 구축하는데 있다. 유전자알고리즘을 활용하여 인덱스펀드 관리를 위한 포트폴리오 최적화 모델을 제안하고, 이렇게 얻은 인덱스펀드의 수익에 초과수익을 얻을 수 있도록 기준지수의 일별 거래대금과 종가를 활용하였다. 실증분석 결과 본 연구의 제안모델은 코스피 200의 움직임을 잘 반영하고 있으며, 이를 활용한 전략은 순수 인덱스펀드에 의한 단순매수 후 보유 전략보다 적절한 개수의 종목을 편입시킨다면 높은 수익률을 가져다줌을 알 수 있었다.
This paper proposes a method for pattern recognition using spectral analysis and a hybrid genetic-neural-fuzzy networks. The feature vectors using spectral analysis on contour sequences of 2-D images are extracted, and the vectors are not effected by translation, rotation and scale variance. A combined model using the advantages of conventional method is proposed, those are supervised learning BP, global searching genetic algorithm, and unsupervised learning fuzzy c-method. The proposed method is applied to 10 aircraft recognition to confirm the performance of the method. The experimental results show that the proposed method is better accuracy than conventional method using BP or fuzzy c-method, and learning speed is enhanced.
We accomplished optimization for pump and treat (P&T) designs in consideration of degradation processes such as retardation and biodegradation, which are significant for contaminant fate in hydrogeology. For more desirable remediation, optimal pumping duration and minimum pumping rate constraint problems are studied. After a specific P&T duration, it replaces the P&T with the enhanced natural attenuation (ENA), which induces aerobic biodegradation by maintaining oxygen concentration. The design in this strategy carries out the optimization for the number and locations of oxygen injection wells.
The set covering(SC) problem is the problem of covering all the rows of an $m{\times}n$ matrix of ones and zeros by a subset of columns with a minimal cost. It has many practical applications of modeling of real world problems. The SC problem has been proven to be NP-complete and many algorithms have been presented to solve the SC problem. In this paper we present hybrid simulated annealing(HSA) algorithm based on the Simulated Annealing(SA) for the SC problem. The HSA is an algorithm which combines SA with a crossover operation in a genetic algorithm and a local search method. Our experimental results show that the HSA obtains better results than SA does.
RFID 리더는 근접한 거리에 위치하고 있는 리더들과 같은 주파수 혹은 인접한 주파수 대역을 사용할 경우 서로 간섭을 일으킨다. 이는 리더간 충돌을 야기하여 태그의 정보를 올바로 인식하지 못하게 한다. 따라서 이런 리더간의 충돌을 방지하기 위해 RFID 국제 표준이 규정되고 논문들이 발표되고 있다. 리더간의 간섭은 간섭을 일으키는 리더간의 거리, 사용하는 주파수 대역과 밀접하게 관련되어 있다. 하지만 기존의 RFID 리더충돌 방지 알고리즘은 리더간 간섭에 큰 영향을 미치는 리더의 위치에 대한 고려 없이 리더 충돌시 주파수를 옮기거나 TDM(Time Division Multiplex)을 기반으로 충돌 확률에 따라 프레임의 크기를 변경하여 리더의 충돌을 줄인다. 본 논문에서는 좀 더 효과적으로 리더 충돌을 방지하기 위해 리더의 위치를 반영하는 2차원 유전자를 사용한 유전자 알고리즘을 제안한다. 2차원의 유전자를 사용하여 진화 연산을 수행함으로써 리더간 간섭에 영향을 미치는 리더의 위치 정보를 효과적으로 활용한다. 따라서 효과적으로 리더 충돌을 줄일 수 있도록 최소한의 간섭을 갖는 최적의 채널 할당을 찾을 수 있다. 또한 제안하는 알고리즘내의 교정(Repair)연산을 통해 모든 리더가 안정적으로 태그를 인식할 수 있도록 한다.
This paper deals with optimal stacking sequence design of laminate composite structures. The stacking sequence optimisation of laminate composites is formulated as a combinatorial problem and is solved using Simulated Annealing (SA), an algorithm devised based on inspiration of physical process of annealing of solids. The combinatorial constraints are handled using a correction strategy. The SA algorithm is strengthened by embedding Tabu search in order to prevent recycling of recently visited solutions and the resulting algorithm is referred to as tabu embedded simulated Annealing (TSA) algorithm. Computational performance of the proposed TSA algorithm is enhanced through cache-fetch implementation. Numerical experiments have been conducted by considering rectangular composite panels and composite cylindrical shell with different ply numbers and orientations. Numerical studies indicate that the TSA algorithm is quite effective in providing practical designs for lay-up sequence optimisation of laminate composites. The effect of various neighbourhood search algorithms on the convergence characteristics of TSA algorithm is investigated. The sensitiveness of the proposed optimisation algorithm for various parameter settings in simulated annealing is explored through parametric studies. Later, the TSA algorithm is employed for multi-criteria optimisation of hybrid composite cylinders for simultaneously optimising cost as well as weight with constraint on buckling load. The two objectives are initially considered individually and later collectively to solve as a multi-criteria optimisation problem. Finally, the computational efficiency of the TSA based stacking sequence optimisation algorithm has been compared with the genetic algorithm and found to be superior in performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.