• Title/Summary/Keyword: enhanced biomass

검색결과 228건 처리시간 0.029초

Mixotrophic Cultivation of a Native Cyanobacterium, Pseudanabaena mucicola GO0704, to Produce Phycobiliprotein and Biodiesel

  • Kim, Shin Myung;Bae, Eun Hee;Kim, Jee Young;Kang, Jae-Shin;Choi, Yoon-E
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권10호
    • /
    • pp.1325-1334
    • /
    • 2022
  • Global warming has accelerated in recent decades due to the continuous consumption of petroleum-based fuels. Cyanobacteria-derived biofuels are a promising carbon-neutral alternative to fossil fuels that may help achieve a cleaner environment. Here, we propose an effective strategy based on the large-scale cultivation of a newly isolated cyanobacterial strain to produce phycobiliprotein and biodiesel, thus demonstrating the potential commercial applicability of the isolated microalgal strain. A native cyanobacterium was isolated from Goryeong, Korea, and identified as Pseudanabaena mucicola GO0704 through 16s RNA analysis. The potential exploitation of P. mucicola GO0704 was explored by analyzing several parameters for mixotrophic culture, and optimal growth was achieved through the addition of sodium acetate (1 g/l) to the BG-11 medium. Next, the cultures were scaled up to a stirred-tank bioreactor in mixotrophic conditions to maximize the productivity of biomass and metabolites. The biomass, phycobiliprotein, and fatty acids concentrations in sodium acetate-treated cells were enhanced, and the highest biodiesel productivity (8.1 mg/l/d) was achieved at 96 h. Finally, the properties of the fuel derived from P. mucicola GO0704 were estimated with converted biodiesels according to the composition of fatty acids. Most of the characteristics of the final product, except for the cloud point, were compliant with international biodiesel standards [ASTM 6761 (US) and EN 14214 (Europe)].

Comparative study of individual and co-application of biochar and wood vinegar on growth of perilla (Perilla frutescens var.) and soil quality

  • Yun-Gu Kang;Nam-Ho Kim;Jun-Ho Kim;Da-Hee Ko;Jae-Han Lee;Jin-Hyuk Chun;Taek-Keun Oh
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.357-366
    • /
    • 2022
  • Biochar can be obtained by using various types of biomass under an oxygen-limited condition. Biochar can be utilized for various applications such as soil improvement, waste management, growth promotion, and adsorption. Wood vinegar is produced by the process of pyrolysis wood biomass and is used as a growth promoter, for soil improvement, and as a feed additive. When wood vinegar is treated on soil, it acts to control soil pH, improve nutrient availability, and alleviate N2O and NH3 volatilization. The objective of this study was to evaluate the effect of biochar and wood vinegar on the growth of perilla and soil quality. The experiment was conducted by using a Wagner pot (1·5,000 a-1) in a glass greenhouse. The biochar was produced by pyrolysis at 450℃ for 30 minutes using rice husk and rice straw. Wood vinegar was diluted to 1 : 500 (v·v-1) and used in this experiement. In the results of a cultivation experiment, co-application of biochar and wood vinegar enhanced the growth of perilla. In particular, rice husk biochar affected the leaves of the perilla, and rice straw biochar influenced the stems of the perilla. In addition, soil quality after treatment with biochar and wood vinegar applied together was highest compared to other units. Therefore, it is anticipated that co-application of biochar and wood vinegar will be more productive and improve soil quality compared to individual utilization of biochar and wood vinegar.

CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가 (Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene)

  • 박성철;김명덕;김선하;김윤희;정재철;이행순;곽상수
    • Journal of Plant Biotechnology
    • /
    • 제42권1호
    • /
    • pp.19-24
    • /
    • 2015
  • 식물은 여러 환경스트레스에 적응하기 위해 스트레스 내성 유전자의 발현 혹은 proline, trehalose, glycine betaine (GB) 등과 같이 삼투압을 조절하는 compatible solute를 생성하면서 진화해 왔다. GB는 고염, 저온 등 환경스트레스 조건에서 식물의 엽록체에서 축적되는 물질 중 하나이다. 토양 박테리아 Arthrobacter globiformis에서 분리한 choline oxidase (codA) 유전자는 choline을 GB로 전환하는 기능을 한다. 본 연구에서는 산화스트레스 유도성 SWPA2 프로모터의 발현조절 하에 codA 유전자를 엽록체에 과발현시킨 형질전환 고구마 식물체(SC식물체)를 제작하여 다양한 환경스트레스 조건에서의 특성을 분석하였다. SC 식물체는 methyl viologen (MV)에 의한 산화스트레스와 건조 처리 조건에서 내성 증가를 보였다. $5{\mu}M$ MV 처리시 형질전환 식물체는 GB의 함량이 증가하였고 낮은 수준의 이온 전도도를 보였다. 건조 스트레스 조건에서 형질전환 식물체는 codA 유전자의 발현이 증가하였으며, 대조구 보다 높은 상대수분함량을 유지하였다. 따라서 본 연구결과의 SC식물체는 고염, 건조토양 등 조건 불리지역에 재배하면 바이오매스를 증가시킬 수 있을 것으로 예상된다.

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권10호
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향 (Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization)

  • 윤희선;엄병환
    • 공업화학
    • /
    • 제33권1호
    • /
    • pp.28-37
    • /
    • 2022
  • 석탄화력발전소들은 여전히 저급 석탄인 lignite와 bituminous coal을 이용한 발전이 이루어지고 있지만, 이는 CO2와 같은 GHG를 배출하는 문제를 유발하고 고갈의 위험성이 있어 이를 대체할 에너지원이 필요하다. 이를 해결하기 위해 바이오매스를 이용한 hydrochar 생산이 주목받고 있다. 본 연구에서는 고품질 hydrochar의 생산을 위해 용매열법을 열수탄화에 적용하여 에탄올 수용액을 기반으로 진행되었다. 본 실험은 다양한 조건에 따른 영향을 파악하기 위해 케나프를 이용해 고액비(1:4, 1:8, 1:2), 반응온도(150~300 ℃)와 체류시간(15~120분)을 다양하게 변화하며 진행되었다. 또한 생산된 hydrochar의 특성을 파악하기 위해 EA, FT-IR. TGA와 SEM을 이용해 분석을 진행하였다. Hydrochar의 탄소 함량은 kenaf에 비해 48.11% 증가하였고, 휘발성 물질은 39.34%가 감소하였다. 추가적으로 반응온도에 따라 연료적 특성이 강화되는 것 또한 확인하였다. 본 연구에서 나타난 결과는 kenaf가 열수탄화와 용매열법을 통해 연료 대체재로써 변화하는 것을 확인하였으며, 이는 석탄의 새로운 대체재가 될 수 있는 가능성을 보였다.

루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구 (Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid)

  • 양승도;김형주;박재현;김도희
    • 청정기술
    • /
    • 제28권3호
    • /
    • pp.232-237
    • /
    • 2022
  • 해조류 바이오매스 중 갈조류의 주요 구성 성분인 알긴산은 다양한 산업에서 널리 사용되어지며, 촉매적 저분자화를 통해 당, 당알코올, 퓨란계, 그리고 유기산과 같은 고부가가치 화합물로 전환할 수 있다. 본 연구에서는 루테늄 담지 활성탄과 마그네시아를 혼합하여 알긴산 저분자화 반응에 적용하고자 하였다. 이러한 불균일계 촉매 시스템은 생성물에 대한 분리가 용이하고 정제 과정의 간소화가 장점으로 작용한다. 반응 결과, 탄소 수 5개 이하의 저분자량 알코올 및 유기산이 생성되었으며, 최적의 반응 조건 탐색을 통해 최종적으로 1 wt% 알긴산 수용액 30 mL, 루테늄 담지 활성탄 100 mg, 마그네시아 100 mg, 반응 온도 210 ℃, 반응 시간 1 h의 반응 조건에서 29.8%의 알코올에 대한 탄소 수율과 43.8%의 알코올 포함 액상 생성물에 대한 총 탄소 수율을 확보하였다.

Cucumber Growth and Nitrogen Uptake as Affected by Solution Temperature and NO3-:NH4+ Ratios during the Seedling

  • Yan, Qiu-Yan;Duan, Zeng-Qiang;Li, Jun-Hui;Li, Xun;Dong, Jin-Long
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.393-399
    • /
    • 2013
  • The effect of solution temperature and nitrogen form on cucumber (Cucumis sativus L.) growth, photosynthesis and nitrogen metabolism was investigated in hydroponic culture. Cucumber plants were grown for 35 days in a greenhouse at three constant solution temperatures ($15^{\circ}C$, $20^{\circ}C$, and $25^{\circ}C$) within a natural aerial temperature ($15-30^{\circ}C$). Four nitrate:ammonium ($NO{_3}^-:NH{_4}^+$) ratios (10:0, 8:2, 5:5, and 2:8 $mmol{\cdot}L^{-1}$) at constant nitrogen (N) concentration of $10mmol{\cdot}L^{-1}$ were applied within each solution temperature treatment. Results showed an increasing solution temperature enhanced plant growth (height, dry weight, and leaf area) in most N treatments. Dry weight accumulation was greatest at the 10:0 $NO{_3}^-:NH{_4}^+$ ratio in the $15^{\circ}C$ solution, the 5:5 ratio in the $20^{\circ}C$ solution and the 8:2 ratio in the $25^{\circ}C$ solution. Photosynthetic rate (Pn) response to solution temperature and $NO{_3}^-:NH{_4}^+$ ratio was similar to that of plant growth. Probably, the photosynthate shortage played a role in the reduced biomass formation. Increasing solution temperature enhanced the nitrate reductase (NR) activity, and further reduced shoots nitrate content. Our results indicate that the optimal ratio of nitrate to ammonium that promotes growth in hydroponic cucumber varies with solution temperature.

Development of Inexpensive High Energetic Electrodes Ni-Cu and Ni-CeO2-Cu for Renewable Energy through Direct Ethanol Fuel Cell

  • Guchhait, Sujit Kumar;Paul, Subir
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.190-198
    • /
    • 2016
  • Application of fuel cell to produce renewable energy for commercial purpose is limited by the high cost of Pt based electrode materials. Development of inexpensive, high energetic electrode is the need of the hour to produce pollution free energy using bio-fuel through a fuel cell. Ni-Cu and Ni-CeO2-Cu electrode materials, electro synthesized by pulse current have been developed. The surface morphology of the electrode materials is controlled by different deposition parameters in order to produce a high current from the electro-oxidation of the fuel, the ethanol. The developed materials are electrochemically characterized by Cyclic Voltammetry (CV), Chronoamperometry (CA) and Potentiodynamic polarization tests. The results confirm that the high current is due to their enhanced catalytic properties viz. high exchange current density (i0), low polarization resistance (Rp) and low impedance. It is worthwhile to mention here that the addition of CeO2 to Ni-Cu has outperformed Pt as far as the high electro catalytic properties are concerned; the exchange current density is about eight times higher than the same on Pt surface. The morphology of the electrode surface examined by SEM and FESEM exhibits that the grains are narrow and sub spherical with 3D surface, containing vacancies in between the elongated grains. The fact has enhanced more surface area for electro oxidation of the fuel, giving rise to an increase in current. Presence of Ni, CeO2, and Cu is confirmed by the XRD and EDXS. Fuel cell fabricated with Ni-CeO2-Cu material electrode is expected to produce clean electrical energy at cheaper rates than conventional one, using bio fuel the derived from biomass.

Enhanced Current Production by Electroactive Biofilm of Sulfate-Reducing Bacteria in the Microbial Fuel Cell

  • Eaktasang, Numfon;Kang, Christina S.;Ryu, Song Jung;Suma, Yanasinee;Kim, Han S.
    • Environmental Engineering Research
    • /
    • 제18권4호
    • /
    • pp.277-281
    • /
    • 2013
  • A dual-chamber microbial fuel cell (MFC) inoculated with Desulfovibrio desulfuricans and supplemented with lactate as an organic fuel was employed in this study. Biofilm formed on the anodic electrode was examined by scanning electron microscopy, revealing that the amount of biofilm was increased with repeated cycles of MFC operation. The maximum current production was notably increased from the first cycle ($1,310.0{\pm}22.3mA/m^2$) to the final cycle ($1,539.4{\pm}25.8mA/m^2$) of MFC run. Coulombic efficiency was also increased from $89.4%{\pm}0.2%$ to $98.9%{\pm}0.5%$. We suggest that the current production efficiency was related to the biomass of biofilm formed on the electrode, which was also increased as the MFC run was repeated. It was also found that D. desulfuricans, which colonized on the electrode, produced filaments or nano-pili. Nano-pili were effective for the attachment of cells on the electrode. In addition, the nano-pili provided a cell-to-cell link and stimulated the development of thicker electroactive biofilm, and therefore, they facilitated electron transfer to the anode. Conclusively, the biofilm of D. desulfuricans enhanced the current production in the MFC as a result of effective attachment of cells and electron transfer from the cell network to the electrode.

Single and mixed chelants-assisted phytoextraction of heavy metals in municipal waste dump soil by castor

  • Wuana, Raymond A.;Eneji, Ishaq S.;Naku, Julius U.
    • Advances in environmental research
    • /
    • 제5권1호
    • /
    • pp.19-35
    • /
    • 2016
  • The phytoextraction of some toxic heavy metals from municipal waste dump soil by castor plant (Ricinus communis) was tested under natural and single or mixed chelant-assisted scenarios in pot microcosms. A sandy loam with total metal contents (mg/kg): Cd (84.5), Cu (114.5), Ni (70.3), Pb (57.8), and Zn (117.5), was sampled from an active dumpsite in Calabar, Nigeria and used for the study. Castor (small seed variety) was grown under natural phytoextraction or single/binary chelant (citric acid, oxalic acid, and EDTA) applications (5-20 mmol/kg soil) for 63 days. Castor exhibited no visual phytotoxic symptoms with typically sigmoid growth profiles at the applied chelant doses. Growth rates, however, decelerated with increase in chelant dose. Post-harvest biomass yields were higher under chelant application than for natural phytoextraction. Both root and shoot metal concentrations (mg/kg) increased quasilinearly and significantly ($p{\leq}0.05$) with increase in chelant dose, furnishing maximum levels as: Cd (55.6 and 20.9), Cu (89.5 and 58.4), Ni (49.8 and 19.6), Pb (32.1 and 12.1), and Zn (99.5 and 46.6). Ranges of translocation factors, root and shoot bioaccumulation factors were 0.21-3.49, 0.01-0.89 and 0.01-0.51, respectively. Overall, the binary chelant treatments were less toxic for R. communis growth and enhanced metal accumulation in shoots to a greater extent than the single chelant scenarios, but more so when EDTA was present in the binary combination. This suggests that the mixed chelants could be considered as alternative treatments for enhanced phytoextraction and revegetation of degraded waste dump soils.