• Title/Summary/Keyword: engineering strong-motion

Search Result 339, Processing Time 0.029 seconds

Seismic analysis of transmission towers under various line configurations

  • Lei, Y.H.;Chien, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.241-264
    • /
    • 2009
  • In this paper, the dynamic behavior for a group of transmission towers linked together through electrical wires and subjected to a strong ground motion will be investigated in detail. In performing the seismic analysis, the wires and the towers concerned are modeled, respectively, by using the efficient cable elements and the 3-D beam elements both considering geometric nonlinearities. In addition, to enhance the reliability and applicability of analytical outcome, a sophisticated soil-structure interaction model will be utilized in analyses. The strength capacities and the fracture occurrences for the main members of the tower are examined with the employment of the appropriate strength interaction equations. It is expected that by aid of this investigation, those who are engaged in code constitution or in practical designing of transmission towers may gain a better insight into the roles played by the interaction force between towers and wires and by the configurations of transmission lines under strong earthquake.

DYNAMIC BEHAVIOR OF CRACKED BEAMS AND SHALLOW ARCHES

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.869-890
    • /
    • 2022
  • We develop a rigorous mathematical framework for studying dynamic behavior of cracked beams and shallow arches. The governing equations are derived from the first principles, and stated in terms of the subdifferentials of the bending and the axial potential energies. The existence and the uniqueness of the solutions is established under various conditions. The corresponding mathematical tools dealing with vector-valued functions are comprehensively developed. The motion of beams and arches is studied under the assumptions of the weak and strong damping. The presence of cracks forces weaker regularity results for the arch motion, as compared to the beam case.

Input energy spectrum damping modification factors

  • Onur Merter;Taner Ucar
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.219-228
    • /
    • 2024
  • This study examines damping modification factors (DMFs) of elastic input energy spectra corresponding to a set of 116 earthquake ground motions. Mean input energy per mass spectra and mean DMFs are presented for both considered ground motion components. Damping ratios of 3%, 5%, 10%, 20%, and 30% are used and the 5% damping ratio is considered the benchmark for DMF computations. The geometric mean DMFs of the two horizontal components of each ground motion are computed and coefficients of variation are presented graphically. The results show that the input energy spectra-based DMFs exhibit a dependence on the damping ratio at very short periods and they tend to be nearly constant for larger periods. In addition, mean DMF variation is obtained graphically for also the damping ratio, and mathematical functions are fitted as a result of statistical analyses. A strong correlation between the computed DMFs and the ones from predicted equations is observed.

Geometrical Velocity and Force Analyses on Planar Serial Mechanisms (평면 직렬 메커니즘의 기하학적 속도 및 힘 해석)

  • Lee, Chan;Lee, Jeh Won;Seo, TaeWon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.648-653
    • /
    • 2015
  • The kinematics with the instantaneous motion and statics of a manipulator has generally been proven algebraically. The algebraic solutions give very simple and straightforward results but the solutions do not have any meaning in physics or geometry. Therefore it is not easy to extend the algebraic results to design or control a robotic manipulator efficiently. Recently, geometrical approach to define the instantaneous motion or static relation of a manipulator is popularly researched and the results have very strong advantages to have a physical insight in the solution. In this paper, the instantaneous motion and static relation of a planar manipulator are described by geometrical approach, specifically by an axis screw and a line screw. The mass center of a triangle with weight and a perpendicular distance between the two screws are useful geometric measures for geometric analysis. This study provides a geometric interpretation of the kinematics and statics of a planar manipulator, and the method can be applied to design or control procedure from the geometric information in the equations.

A Study on 4DOF Ship Dynamics in Maneuver by Principal Component Analysis (주성분 분석을 통한 선박 조종 중 4자유도 동역학 특성 연구)

  • Dong-Hwan Kim;Minchang Kim;Seungbeom Lee;Jeonghwa Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.1
    • /
    • pp.29-43
    • /
    • 2024
  • The present study concerns a feasibility study for applying principal component analysis to ship dynamics in maneuver. Using the four degrees of freedom standard modular model for ship dynamics maneuver simulations of large angle zigzag tests with rudder deflection angle variations are conducted. The datasets of ship motion, hydrodynamic force, and moment during the maneuver are acquired to identify the principal modes. The covariance matrix of obtained ship dynamics variables shows a strong linear correlation between the motion, hydrodynamic force, and moment, except the surge force. Four eigenvectors of the covariance matrix are selected as the principal modes of ship dynamics. Using the principal modes, ship motion in turning circle and zigzag tests is reconstructed, showing good agreement with the original data.

The motion rule of sand particles under control of the sand transportation engineering

  • Xin, Lin-gui;Cheng, Jian-jun;Chen, Bo-yu;Wang, Rui
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.213-221
    • /
    • 2018
  • In the desert and Gobi regions with strong wind and large sediment discharge, sand transporting engineering is more effective than sand blocking and sand fixing measures in sand prevention. This study uses the discrete phase model of 3D numerical simulation to study the motion trail, motion state and distribution rule of sand particles with different grain diameters when the included angle between the main shaft of the feather-row lateral transportation sand barrier and the wind direction changes, and conducts a comparison in combination with the wind tunnel test and the flow field rule of common sand barrier. According to the comparison, when wind-sand incoming flow passes through a feather-row sand barrier, sand particles slow down and deposit within the deceleration area under the resistance of the feather-row sand barrier, move along the transportation area formed by the transportation force, and accumulate as a ridge at the tail of the engineering. With increasing wind speed, the eolian erosion of the sand particles to the ground and the feather-row sand barrier is enhanced, and the sand transporting quantity and throw-over quantity of the feather-row sand barrier are both increased. When sand particles with different grain diameters bypass the feather-row sand barrier, the particle size of the infiltrating sands will increase with the included angle between the main shaft of the feather-row sand barrier and the wind direction. The obtained result demonstrates that, at a constant wind speed, the flow field formed is most suitable for the lateral transportation of the wind-drift flow when the included angle between the main shaft of the feather-row sand barrier lateral transportation engineering and the wind speed is less than or equal to $30^{\circ}$.

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Assessment of Historical Earthquake Magnitudes and Epicenters Using Ground Motion Simulations (지진동 모사를 통한 역사지진 규모와 진앙 평가)

  • Kim, Seongryong;Lee, Sang-Jun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.59-69
    • /
    • 2021
  • Historical records of earthquakes are generally used as a basis to extrapolate the instrumental earthquake catalog in time and space during the probabilistic seismic hazard analysis (PSHA). However, the historical catalogs' input parameters determined through historical descriptions rather than any quantitative measurements are accompanied by considerable uncertainty in PSHA. Therefore, quantitative assessment to verify the historical earthquake parameters is essential for refining the reliability of PSHA. This study presents an approach and its application to constrain reliable ranges of the magnitude and corresponding epicenter of historical earthquakes. First, ranges rather than specific values of ground motion intensities are estimated at multiple locations with distances between each other for selected historical earthquakes by reviewing observed co-seismic natural phenomena, structural damage levels, or felt areas described in their historical records. Based on specific objective criteria, this study selects only one earthquake (July 24, 1643), which is potentially one of the largest historical earthquakes. Then, ground motion simulations are performed for sufficiently broadly distributed epicenters, with a regular grid to prevent one from relying on strong assumptions. Calculated peak ground accelerations and velocities in areas with the historical descriptions on corresponding earthquakes are converted to intensities with an empirical ground motion-intensity conversion equation to compare them with historical descriptions. For the ground motion simulation, ground motion prediction equations and a frequency-wavenumber method are used to consider the effects of possible source mechanisms and stress drop. From these quantitative calculations, reliable ranges of epicenters and magnitudes and the trade-off between them are inferred for the earthquake that can conservatively match the upper and lower boundaries of intensity values from historical descriptions.

921 Taiwan Earthquake

  • Chow, Ting
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.17-17
    • /
    • 2000
  • A magnitude of 7.3 in Richter scale earthquake the strongest in-land earthquake in hundred years struck central Taiwan on September 21, 1999. It caused over 2,400 deaths and 30 some trillion won losses. To give an overview of this devastating earthquake this presentation will cover the following topics: 1) Introduction to Taiwan historical and 921 earthquake. 2) Damages to people landslide building dam bridge tank power facility etc. 3) Strong motion data and its characteristics. 4) Some changes to the building code triggered by the experience of the earthquake. Finally a concluding remark will be made.

  • PDF

Flow Visualizations and Laser Doppler Velocity Measurements in a Fontan Connection

  • Kim, Young-H.;Yoganathan, Ajit P.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.111-114
    • /
    • 1994
  • Three component velocity measurements with a refractive index-matching technique was used to investigate the flow characteristics in the atrio-pulmomnary (AP) Fontan connection under the steady flow condition. A strong swirl was observed in the extra-cardiac conduit and the main pulmonary artery (MPA). Maximum velocity magnitude in the MPA was about 0.8 m/s near the posterior wall at 6 liter/min. Swirling motion of the flow as well as geometric abnormalities of the connection are important factors in energy loss across Fontan connections.

  • PDF