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DYNAMIC BEHAVIOR OF CRACKED BEAMS AND

SHALLOW ARCHES

Semion Gutman, Junhong Ha, and Sudeok Shon

Abstract. We develop a rigorous mathematical framework for studying

dynamic behavior of cracked beams and shallow arches. The governing
equations are derived from the first principles, and stated in terms of the

subdifferentials of the bending and the axial potential energies. The ex-
istence and the uniqueness of the solutions is established under various

conditions. The corresponding mathematical tools dealing with vector-

valued functions are comprehensively developed. The motion of beams
and arches is studied under the assumptions of the weak and strong damp-

ing. The presence of cracks forces weaker regularity results for the arch

motion, as compared to the beam case.

1. Introduction

The main goal of this paper is to investigate the dynamic behavior of cracked
beams and arches based on a rigorous mathematical framework. In [8] we
developed a variational formulation for such cracked structural elements. Using
this approach, the equations of motions were derived in [7]. In this paper we
continue the study by establishing the existence and the uniqueness results for
such equations. See [7, 8] for a literature review.

A brief review of the main concepts is presented in Section 2, where we
describe special Hilbert spaces V , H1

0 , H. These spaces are broad enough to
contain continuous functions with discontinuous derivatives at the joint points.

Then we introduce the operator A : V → V ′. The main result in [8] is that
the solution u of the equation Au = f in H satisfies the joint conditions at the
crack points, including the slope discontinuities.

Next, in Section 3, we review the equations of motion for cracked beams and
arches in a non-dimensional form following [7]. These equations are expressed
in terms of the subdifferentials of the potential energies Ub, and Ua due to the
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bending and axial force, correspondingly. The Appendix (Section 9) presents
a brief review of these concepts, and relevant examples.

In this framework the abstract equation of motion for cracked beams and
arches is

(1.1) ÿ + ∂Ub(y) + ∂Ua(y) + cdẏ = p,

where ẏ, ÿ denote the time derivatives.
The main result in Section 3 is that the “classical” equation for a cracked

shallow arch is

ÿ + y′′′′ − 1

π

(
β +

1

2

∫ L

0

|y′(x, t)|2 dx

)(
y′′ +

m∑
i=1

θiy
′′(xi, t)δ(x− xi)

)
+ cdẏ = p,

where δ = δ(x) is the delta function.
Motion in viscous media results in the additional term µAẏ, µ > 0 in the

governing equations. Such a case is referred to as the strong damping motion.
If the viscous effects are neglected (µ = 0), we have the weak damping case.

In Section 4, we study some properties of functions with values in Hilbert
spaces, including the generalization of the Chain Rule for the subdifferentials,
used to derive critical a priori estimates.

The motion of a cracked beam in the cases of the weak (µ = 0) and strong
(µ > 0) damping is investigated in Section 5. We also consider the case of the
vanishing damping, and show that y(µ) → y as µ → 0. This approach can be
considered as a “parabolic regularization” method.

While studying the motion of cracked arches, we encounter the following
obstacle. The solution y of the problem is sought to be the weak limit of the
approximate solutions, but the subdifferential ∂Ua is a non-linear operator.
Generally speaking, non-linear operators are not weakly continuous. In Section
6 we undertake an additional examination of the weak convergence, and use
the special structure of the operator ∂Ua to justify the passage to the limit
under these circumstances.

The strong arch damping problem is studied in Section 7. In this case the
results for the arches are similar to the ones for the beams. The weak arch
damping problem is considered in Section 8. We show that y can also be
obtained as a weak limit of the corresponding strong damping solutions y(µ).

The presence of the nonlinear subdifferential of the axial potential energy
∂Ua results in weaker results for the arches. In particular, in the weak arch
damping case the solutions are less regular, than for the beams. Also, their
uniqueness could not be obtained.

2. Variational setting for cracked beams and arches

This section contains a brief review of our results from [8], to which we refer
for further details.

The transverse motion of a beam or an arch is described by the function
y(x, t), x ∈ [0, π], t ≥ 0, which represents the deformation of the beam/arch
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measured from the x-axis. For definiteness, the boundary conditions are of the
hinged type

(2.1) y(0, t) = y′′(0, t) = 0, y(π, t) = y′′(π, t) = 0, t ∈ (0, T ).

Other types of boundary conditions can be treated similarly.
According to the common practice in the field, see [4], a crack is modeled

by a massless rotational spring with the spring flexibility θ. The flexibility θ is
equal to 0 if there is no crack, and it increases with the crack depth.

Suppose that there are m cracks along the length of the arch (or a beam),
located at 0 < x1 < · · · < xm < π. For convenience, we denote x0 = 0, and
xm+1 = π. Consequently, the cracked arch is modeled as a collection of m+ 1
uniform arches over the intervals li = (xi−1, xi), i = 1, . . . ,m+ 1.

Let H be the Hilbert space

(2.2) H =

m+1⊕
i=1

L2(li).

Let the inner product and the norm in L2(li) be denoted by (·, ·)i and | · |i
correspondingly. The inner product and the norm in H are defined by

(2.3) (u, v)H =

m+1∑
i=1

(u, v)i, |u|2H =

m+1∑
i=1

|u|2i .

Define the linear space

(2.4) V =

{
u ∈

m+1⊕
i=1

H2(li) : u(0) = u(π) = 0, J [u](xi) = 0, i = 1, . . . ,m

}
.

Let the inner product in V be

(2.5) ((u, v))V =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

J [u′](xi)J [v′](xi) for any u, v ∈ V,

where (u′′, v′′)i =
∫
li
u′′(x)v′′(x) dx.

The corresponding norm in V is

(2.6) ‖u‖2V =

m+1∑
i=1

|u′′|2i +

m∑
i=1

|J [u′](xi)|2 for any u ∈ V,

where | · |i is the norm in L2(li). It can be shown that V is a Hilbert space.
The Hilbert space H1

0 = H1
0 (0, π) is equipped with the inner product and

the norm given by

(2.7) (u, v)1 = (u′, v′)H , ‖u‖21 = |u′|2H , u, v ∈ H1
0 .

The norm in (H1
0 )′ will be denoted by ‖ · ‖−1. It can be shown that the

identity embedding i : V → H1
0 is linear, continuous, with a dense range in H1

0 .
Furthermore, it is compact.
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We have

(2.8) V ⊂ H1
0 ⊂ H ⊂

(
H1

0

)′ ⊂ V ′,
with dense embeddings. Furthermore, the embeddings V ⊂ H1

0 ⊂ H are
compact.

Now we can introduce the operator A : V → V ′ that “absorbs” the junction
boundary conditions. This operator is central to the variational setting of
problems for cracked beams and arches. Here J [u](x) = u(x+)− u(x−).

Definition 1. Define the operator A on V by

(2.9) 〈Au, v〉V =

m+1∑
i=1

(u′′, v′′)i +

m∑
i=1

1

θ i
J [u′](xi)J [v′](xi)

for any u, v ∈ V . We will also write 〈Au, v〉 for 〈Au, v〉V if it does not cause a
confusion.

Recall that a linear operator A : V → V ′ is called coercive if there exists
c > 0 such that 〈Au, u〉 ≥ c‖u‖2V for any u ∈ V . We have:

Lemma 2.1. Let A be defined by (2.9). Then A is a symmetric, continuous,
linear, and coercive operator from V onto V ′.

Functions u = u(x) modeling an arch with cracks satisfy the hinged bound-
ary conditions

(2.10) u(0) = u(π) = 0, u′′(0) = u′′(π) = 0,

and

(2.11) J [u](xi) = 0, J [u′′](xi) = 0, J [u′′′](xi) = 0, J [u′](xi) = θiu
′′(x+i ),

for i = 1, . . . ,m, at the crack (or joint) points.
The next theorem is the main result of this section.

Theorem 2.2. Let the domain of A be D(A) = {v ∈ V : Av ∈ H}.
(i) If u ∈ D(A), then u|li ∈ H4(li), Au = u′′′′ a.e. on li, i = 1, . . . ,m + 1,

and u satisfies conditions (2.10)–(2.11).
(ii) If f ∈ H, then equation Au = f in V ′ has a unique solution u ∈ D(A).

Furthermore, we have:

Lemma 2.3. Let A be the operator defined in (2.9). Then

(i) There exists an increasing sequence of its real positive eigenvalues λ41, λ
4
2,

. . . , with limk→∞ λ4k =∞.
(ii) The corresponding eigenfunctions ϕk ∈ D(A) ⊂ V , k ≥ 1, and they

satisfy the junction conditions (2.10)–(2.11).
(iii) The eigenfunctions ϕk satisfy Aϕk = λ4kϕk in H, k ≥ 1. That is,

ϕ′′′′k (x) = λ4kϕk(x) a.e. on every interval li, i = 1, . . . ,m+ 1.
(iv) The set {ϕk}∞k=1 is a complete orthonormal basis in H.
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An efficient method for a computational determination of the eigenvalues
and the eigenfunctions of A (Modified Shifrin’s method) is discussed in [8].

3. Beam and arch equations of motion

In this section we review our results from [7]. A brief review of convex
functions φ, and their subdifferentials ∂φ is presented in the Appendix. This
review also treats the potential energy Ub(u) due to bending, the potential
energy Ua(u) due to the axial force, and their subdifferentials. It is shown
that both functions are convex, lower-semicontinuous function on V and H1

0

correspondingly.
The variational formulation of the previous section allows us to apply the

Extended Hamilton’s Principle to derive the following abstract equation of
motion for beams and aches

(3.1) ÿ + ∂Ub(y) + ∂Ua(y) + cdẏ = p.

The equation is satisfied in V ′, a.e. for t ∈ [0, T ]. Note: ∂Ub : V → V ′, and
∂Ua : H1

0 → (H1
0 )′.

Beam equations. In the classical Euler-Bernoulli beam theory the influ-
ence of the axial force is disregarded, so we let Ua = 0. This results in the
following abstract equation for the beam with cracks

(3.2) ÿ +Ay + cdẏ = p,

which is satisfied in V ′, a.e. for t ∈ [0, T ].
If u ∈ D(A), then u satisfies the boundary conditions of the problem, i.e.,

(2.10) and (2.11), as well as Au = u′′′′ a.e. on every interval li, i = 1, . . . ,m+1.
Then equation (3.2) can be written as

(3.3) ÿ + y′′′′ + cdẏ = p

on every subinterval li, i = 1, . . . ,m + 1. We can call it the classical Beam
equation for cracked beams.

Strong damping. Viscous effects on the beam and arch motion are dis-
cussed in [1, 5]. Considerations based on the Voigt model for viscoelasticity
result in the additional term µAẏ in the governing equations. Here µ > 0 is a
non-dimensional normalized dynamic viscosity coefficient.

If such a term is present, we refer to the model as having the strong damp-
ing. Otherwise, if µ = 0, the model is for the weak damping. In particular,
equations (3.2) and (3.3) describe the weak beam damping motion case. The
corresponding non-dimensional abstract and classical equations in the presence
of the strong damping µ > 0 are

(3.4) ÿ +Ay + µAẏ + cdẏ = p,

and

(3.5) ÿ + y′′′′ + µẏ′′′′ + cdẏ = p.
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Arch with cracks. The axial potential energy Ua(y) of the arch has the
expression

(3.6) Ua(y) =
1

2π

(
β +

1

2
|y′|2H

)2

,

and its subdifferential ∂Ua(u) is computed in Example 9.3 as

(3.7) ∂ψ(u) = Bu = −
m∑
i=1

J [u′](xi)δ(x− xi)− u′′, u ∈ V.

Then equation (3.1) becomes

(3.8) ÿ +Ay − 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

J [y′](xi)δ(x− xi)− y′′
)

+ cdẏ = p,

which is the abstract equation for a shallow arch with cracks. It is satisfied in
V ′, a.e. t ∈ [0, T ].

Then, assuming that the function y is smooth, as discussed in Example 9.3,
we can use (9.9) for the subdifferential ∂Ua(u), and ∂Ub(u) = Au = u′′′′. This
results in

ÿ + y′′′′ − 1

π

(
β +

1

2
|y′|2H

)( m∑
i=1

θiy
′′(xi, t)δ(x− xi)− y′′

)
+ cdẏ = p,(3.9)

which can be called the “classical” form of the shallow arch equation with
cracks. These equations are also referred to as describing the weak arch damp-
ing motion. The strong damping equations (µ > 0) are obtained from (3.8)
and (3.9) by adding to them the terms µAẏ and µẏ′′′′ correspondingly.

4. Vector functions I

In this section we develop some mathematical tools needed to study the
beam motion. First, introduce the Hilbert space of vector-valued functions

(4.1) W [0, T ] = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′)},

where the functions y, and their time derivatives ẏ, ÿ are understood in the
sense of distributions with the values in V , H and V ′, correspondingly, see [9].
The inner product in W [0, T ] is set to be the sum of the inner products in the
constituent spaces.

Similarly to the definition of W [0, T ], we let

(4.2) Wr[0, T ] = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;V ), ÿ ∈ L2(0, T ;V ′)}.

For functions y in Wr[0, T ], we have ẏ ∈ L2(0, T ;V ), resulting in more regular
functions than the ones in W [0, T ].

Our main tool is the following crucial result established in [10, Lemma 2.4.1]:
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Lemma 4.1. Let A : V → V ′ be a linear, continuous and symmetric op-
erator, coercive on V . Suppose that y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), and
ÿ + Ay ∈ L2(0, T ;H). Then, after a modification on a set of measure zero,
y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H) and, in the sense of distributions on (0, T ),
one has

(4.3) (ÿ +Ay, ẏ) =
1

2

d

dt

(
|ẏ|2 + 〈Ay, y〉

)
.

Sometimes, instead of Lemma 4.1, we can use:

Lemma 4.2. (i) Let y∈L2(0, T ;V ), ẏ∈L2(0, T ;V ′). Then y∈C([0, T ];H),
and

(4.4)
d

dt
|y|2H = 2〈ẏ, y〉.

(ii) Let y ∈Wr[0, T ]. Then y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H), and

(4.5)
d

dt
|ẏ|2H = 2〈ÿ, ẏ〉.

(iii) Let y, ẏ ∈ L2(0, T ;V ). Let an operator A satisfy the conditions of Theo-
rem 9.1, and let φ(u) = 1

2 〈Au, u〉, u ∈ V . Then

(4.6)
d

dt
φ(y) = 〈Ay, ẏ〉 = 〈∂φ(y), ẏ〉.

Proof. (i) This is [10, Lemma 2.3.2].
(ii) Replace y with ẏ in (i). The continuity y ∈ C([0, T ];V ) follows from

y(t)− y(s) =
∫ t
s
ẏ(τ) dτ in V .

(iii) We have

lim
s→t

y(s)− y(t)

s− t
= ẏ(t),

a.e. for t ∈ (0, T ). By Theorem 9.1, function φ is Fréchet differentiable on V
(and ∂φ = A). Furthermore,

(4.7) |φ(y(s))− φ(y(t))− 〈Ay(t), y(s)− y(t)〉| ≤ C

2
‖y(s)− y(t)‖2V

for any s, t ∈ [0, T ]. Then, since y ∈ C([0, T ];V ),

lim
s→t

∣∣∣∣φ(y(s))− φ(y(t))

s− t
−
〈
Ay(t),

y(s)− y(t)

s− t

〉∣∣∣∣(4.8)

≤ C

2
lim
s→t

∥∥∥∥y(s)− y(t)

s− t

∥∥∥∥
V

‖y(s)− y(t)‖V = 0,

a.e. t ∈ (0, T ), and (4.6) follows. �

For completeness, we mention the following related result established in
[2, Lemma 4.4], [3, Lemma 3.3]. It shows that the subdifferential is the proper
concept to generalize the Chain Rule for the differentiation of vector-valued
functions.
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Lemma 4.3. Let X be a Hilbert space, φ be a proper, convex, lower semicon-
tinuous function on X, and ∂φ ⊂ X × X be its subdifferential. Suppose that
y, ẏ ∈ L2(0, T ;X), and g ∈ L2(0, T ;X) is such that g(t) ∈ ∂φ(y(t)) a.e. for
t ∈ (0, T ).

Then the function t→ φ(y(t)) is absolutely continuous on [0, T ], and

(4.9)
d

dt
φ(y(t)) = (g(t), ẏ(t))X ,

a.e. for t ∈ (0, T ).

We conclude this section with some eigenfunction expansion results for the
operator A, introduced in Section 2. The existence of its eigenvalues λ4k, and
the eigenfunctions ϕk, k ≥ 1 was shown in Lemma 2.3.

By Lemma 2.1, the operator A is linear, bounded, symmetric, and coercive
on V . Therefore it defines an equivalent inner product and the norm on V by

(4.10) ((u, v))A = 〈Au, v〉V , ‖u‖2A = 〈Au, u〉V , u, v ∈ V.

This space is denoted by VA.

Lemma 4.4. (i) System {ϕk}∞k=1 is an orthonormal basis in H.
(ii) System { 1

λ2
k
ϕk}∞k=1 is an orthonormal basis in VA.

Proof. Part (i) was stated in Lemma 2.3. For (ii) we have

(4.11)

((
1

λ2j
ϕj ,

1

λ2k
ϕk

))
A

=

〈
1

λ2j
Aϕj ,

1

λ2k
ϕk

〉
V

=

(
λ2jϕj ,

1

λ2k
ϕk

)
H

= 0

for any j 6= k ≥ 1. If j = k, then (4.11) shows that ‖ϕk‖2A = 〈Aϕk, ϕk〉V =
λ4k|ϕk|2H = λ4k, k ≥ 1.

To see that this system is a basis in VA, suppose that there exists w ∈ VA,
such that ((ϕk, w))A = 0 for any k ≥ 1. Then ((ϕk, w))A = λ4k(ϕk, w)H = 0.
But {ϕk}∞k=1 is a basis in H, thus w = 0. �

Lemma 4.5. Let m ≥ 1, and Vm = span{ϕ1, . . . , ϕm} ⊂ V . Define operators
Pm : H → Vm, and P ∗m : V ′ → V ′ by

(4.12) Pmh =

m∑
k=1

(h, ϕk)Hϕk, h ∈ H,

and

(4.13) (P ∗mg, v) = 〈g, Pmv〉A, g ∈ V ′, v ∈ V.

Then

(i) Pm : H → Vm is an orthogonal projection in H, and |Pmh| ≤ |h| for any
h ∈ H. Also |h− Pmh| → 0 as m→∞.

(ii) Pm : VA → Vm is an orthogonal projection in VA, and ‖Pmv‖A ≤ ‖v‖A
for any v ∈ V . Also ‖v − Pmv‖A → 0 as m→∞.
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(iii) Operator P ∗m : V ′ → V ′ satisfies ‖P ∗mg‖V ′ ≤ ‖g‖V ′ , and Pmg ⇀ g weakly
in V ′ as m→∞ for any g ∈ V ′.

Proof. Part (i) follows from Lemma 4.4(i). For (ii), let v ∈ VA, and P̂mv =∑m
k=1

((
v, 1

λ2
k
ϕk

))
A

1
λ2
k
ϕk. Then we can verify directly that P̂m = Pm on

V . Lemma 4.4(ii) implies the other assertions in (ii). For part (iii), we have
|(P ∗mg, v)| = |〈g, Pmv〉A| ≤ ‖g‖V ′ ‖v‖A, and (P ∗mg, v) = 〈g, Pmv〉A → 〈g, v〉A as
m→∞ for any v ∈ V . �

5. Beam motion

In this section we establish the uniqueness and the existence of motion for
a cracked beam under the assumption of the weak and strong damping µ > 0.
Since the proofs are standard and straightforward, they will be omitted. Our
approach closely follows the one in [10, Section 2.4.1]. Extended proofs are
provided for the arch motion in Sections 7 and 8.

We also show that y(µ) → y as µ→ 0, where y(µ) and y are the solutions of
the corresponding strong and weak damping problems. This can be considered
to be a regularization method having some similarities with the “parabolic
regularization” in [9, Section 3.8.5].

Definition 2. Let u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H). A function y ∈
W [0, T ] is called a solution of the weak beam damping problem if it satisfies
y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), y(0) = u0, ẏ(0) = v0, and

(5.1) ÿ +Ay + cdẏ = f,

in V ′, a.e. for t ∈ [0, T ]. Here the operator A : V → V ′ is defined by (2.9). We
will write y = y(u0, v0, f) to emphasize the dependence of the solution on the
data.

Lemma 5.1. Let y be a solution of the weak beam damping problem (5.1).
Then y ∈W [0, T ] ∩ C([0, T ];V ), ẏ ∈ C([0, T ];H), and

(5.2) |ẏ(t)|2 + ‖y(t)‖2A ≤ c
(
|v0|2 + ‖u0‖2A + ‖f‖2L2(0,T ;H)

)
for any t ∈ [0, T ]. Furthermore, the solution is unique.

Now we establish the existence of the solution y by taking the limit of ap-
proximate solutions.

Given m ≥ 1, a function ym is called an approximate solution of the weak
beam damping problem if it satisfies the same conditions as in Definition 2,
except that ym(0) = Pmu0, ẏm(0) = Pmv0, and

(5.3) ÿm +Aym + cdẏm = Pmf,

in V ′, a.e. for t ∈ [0, T ].
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Theorem 5.2. Let u0 ∈ V, v0 ∈ H, T > 0, and f ∈ L2(0, T ;H). Then there
exists a unique solution y of the weak beam damping problem (5.1), and it
satisfies y ∈W [0, T ] ∩ C([0, T ];V ), ẏ ∈ C([0, T ];H). Furthermore,

|ẏ(t)− ẏm(t)|2 + ‖y(t)− ym(t)‖2A(5.4)

≤ c
(
|v0 − Pmv0|2 + ‖u0 − Pmu0‖2A + ‖f − Pmf‖2L2(0,T ;H)

)
for any approximate solution ym, m ≥ 1, t ∈ [0, T ].

Note that inequality (5.4) implies that ym → y strongly in C([0, T ];V ), and
ẏm → ẏ strongly in C([0, T ];H) as m→∞.

Definition 3. Let u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H). A function y ∈
Wr[0, T ] is called a solution of the strong beam damping problem with µ > 0
if it satisfies y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), y(0) = u0, ẏ(0) = v0, and

(5.5) ÿ +Ay + µAẏ + cdẏ = f,

in V ′, a.e. for t ∈ [0, T ]. The operator A : V → V ′ is defined by (2.9). We
will write y = y(u0, v0, f) = y(µ)(u0, v0, f) to emphasize the dependence of the
solution on the data.

Lemma 5.3. Let y = y(u0, v0, f) be a solution of the strong beam damping
problem (5.5).

(i) Then

(5.6) |ẏ(t)|2H + ‖y(t)‖2A + µ‖ẏ‖2L2(0,t;VA) ≤ c
(
|v0|2H + ‖u0‖2A + |f |2L2(0,T ;H)

)
.

(ii) Let y1 = y(u0,1, v0,1, f1) and y2 = y(u0,2, v0,2, f2) be two solutions of
(5.5). Then their difference z = y(u0,1, v0,1, f1)− y(u0,2, v0,2, f2) satisfies

|ż(t)|2H + ‖z(t)‖2A + µ‖ż‖2L2(0,t;VA)(5.7)

≤ C
(
|v0,1 − v0,2|2H + ‖u0,1 − u0,2‖2A + |f1 − f2|2L2(0,T ;H)

)
.

(iii) The solution y(u0, v0, f) is unique.

Given m ≥ 1, a function ym is called an approximate solution of the strong
beam damping problem if it satisfies the same conditions as in Definition 3,
except that ym(0) = Pmu0, ẏm(0) = Pmv0, and

(5.8) ÿm +Aym + µAẏm + cdẏm = Pmf,

in V ′, a.e. for t ∈ [0, T ].

Theorem 5.4. Given u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H), there exists
a unique solution y = y(µ) of the strong beam damping problem (5.5). The
solution satisfies y ∈ C([0, T ];V ), and ẏ ∈ C([0, T ];H). Furthermore,

|ẏ(t)− ẏm(t)|2 + ‖y(t)− ym(t)‖2A + µ‖ẏ − ẏm‖2L2(0,t;VA)(5.9)

≤ c
(
|v0 − Pmv0|2 + ‖u0 − Pmu0‖2A + ‖f − Pmf‖2L2(0,T ;H)

)
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for any approximate solution ym, m ≥ 1, t ∈ [0, T ].

Note that inequality (5.9) implies that ym → y strongly in C([0, T ];V ),
ẏm → ẏ strongly in C([0, T ];H) and in L2(0, T ;V ) as m→∞.

Finally in this section, we show that the vanishing damping µ → 0 causes
the strong damping solutions to converge to the weak damping solution.

Theorem 5.5. Let µ > 0, and y(µ) = y(µ)(u0, v0, f) be the solution of the
strong beam damping problem (5.5) for some u0 ∈ V , v0 ∈ H, f ∈ L2(0, T ;H).
Let y = y(u0, v0, f) be the solution of the weak beam damping problem (5.1). If
µ→ 0, then y(µ) → y in C([0, T ];V ), and ẏ(µ) → ẏ in C([0, T ];H).

Proof. Let y
(µ)
m and ym be the approximate solutions for the strong and the

weak beam damping problems. For any t ∈ [0, T ], we have

(5.10) ‖y(t)−y(µ)(t)‖ ≤ ‖y(t)−ym(t)‖+‖ym(t)−y(µ)m (t)‖+‖y(µ)m (t)−y(µ)(t)‖.
Let ε > 0. By estimates (5.4) and (5.9), we can make the first and the third
terms in the right side of (5.10) to be less than ε, by choosing a sufficiently
large m.

Now let zm = ym − y(µ)m . It satisfies equation

(5.11) z̈m +Azm + cdżm = µAẏ(µ)m ,

with zm(0) = 0, and żm(0) = 0. By the properties of the approximate solutions,
zm, żm ∈ C([0, T ];Vm). Multiply both sides of (5.11) by żm, and use Lemma
4.2 to obtain

(5.12)
1

2

d

dt

(
|żm|2H + ‖zm‖2A

)
+ cd|żm|2H = µ

(
Aẏ(µ)m , żm

)
.

Integrate it on [0, t], and get

(5.13) |żm(t)|2H + ‖zm(t)‖2 ≤ cµ‖Aẏ(µ)m ‖L2(0,T ;V ′)‖żm‖L2(0,T ;V ),

where the constant c > 0 is independent of m ∈ N and µ > 0.
Recall that any two norms on a finite-dimensional space are equivalent. In

particular, the norms | · |H and ‖ · ‖V are equivalent on Vm. This is also seen
directly from ‖ϕk‖2A = λ4k|ϕk|2H = λ4k, k ≥ 1, see Lemma 4.4. Thus, there
exists a constant Cm, such that ‖u‖V ≤ Cm|u|H for any u ∈ Vm. In particular,
‖żm‖L2(0,T ;V ) ≤ cCm|żm|L2(0,T ;H).

Using (5.2) and (5.6), which are also valid for ym and y
(µ)
m correspondingly,

we conclude that |żm|L2(0,T ;H) ≤ c. Therefore (5.13) becomes

(5.14) |żm(t)|2H + ‖zm(t)‖2 ≤ cCmµ‖Aẏ(µ)m ‖L2(0,T ;V ′).

Since (5.6) is valid for ẏ
(µ)
m for any m ≥ 1, we conclude that the set

{√µẏ(µ)m }µ>0 is bounded in L2(0, T ;V ). Then the boundedness of A on V

implies that µ‖Aẏ(µ)m ‖L2(0,T ;V ′) → 0 as µ→ 0.
Therefore, the left side in (5.14) approaches zero as µ → 0. Thus we can

choose a sufficiently small µ > 0, such that ‖ym(t)− y(µ)m (t)‖ = ‖zm‖ < ε, and
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(5.10) becomes ‖y(t) − y(µ)(t)‖ ≤ 3ε. This implies that y(µ) → y as µ → 0,
in C([0, T ];V ), and the first claim of the theorem is established. The second
claim is proved using the same arguments applied to |ẏ(t)− ẏ(µ)(t)|H . �

6. Vector functions II

In preparation for investigating shallow arch dynamics, we have to develop
some additional results on vector functions. Some results on functions with
values in Hilbert spaces have already been discussed in Section 4. The Hilbert
spaces W [0, T ] and Wr[0, T ] were defined in (4.1) and (4.2). The space VA was
introduced in (4.10).

In attempting to use the same approach for arches as for the beams, we
encounter the problem of passing to the weak limit in the non-linear term
∂Ua. This requires us to study the weak convergence in more detail.

Let X be a Hilbert space. A function y : [0, T ] → X is called weakly
continuous with values in X if scalar functions t → 〈y(t), w〉X are continuous
on [0, T ] for every w ∈ X ′.

The next lemma deals with weakly continuous functions in Hilbert spaces
X and Y satisfying X ⊂ Y . Since the condition X ⊂ Y implies that Y ′ ⊂ X ′,
Lemma 6.1 is a non-trivial result.

Lemma 6.1. Let X and Y be two Hilbert spaces such that X ⊂ Y is a contin-
uous and dense embedding.

(i) Let a function g : [0, T ] → X satisfy g ∈ L∞(0, T ;X). If g is weakly
continuous with values in Y , then g is weakly continuous with values in
X.

(ii) Let a sequence {xn}n≥1 be bounded in X. If xn ⇀ y0 weakly in Y , then
y0 ∈ X, and xn ⇀ y0 weakly in X as n→∞.

Proof. Part (i) is [10, Lemma 2.3.3].
For part (ii), suppose that ‖xn‖X ≤ M for some M > 0, and any n ≥ 1.

Identify Y with its dual Y ′. Then X ⊂ Y ⊂ X ′ with continuous and dense
embeddings, and the duality pairing 〈·, ·〉X extends the inner product (·, ·) in
Y . In particular, there exists c > 0 such that ‖w‖X′ ≤ c|w|Y for any w ∈ Y .

First, fix w ∈ Y . Then

|(xn, w)| = |〈xn, w〉X | ≤M‖w‖X′ ≤Mc|w|Y .

It is assumed that xn ⇀ y0 weakly in Y . Then passing to the limit as
n→∞, gives

(6.1) |(y0, w)| = |〈y0, w〉X | ≤M‖w‖X′ .

Since the embedding Y ⊂ X ′ is dense, we conclude that inequality |〈y0, w〉X | ≤
M‖w‖X′ is satisfied for any w ∈ X ′. Therefore y0 ∈ X, and ‖y0‖X ≤M .

Now we want to show that xn ⇀ y0 weakly in X as n→∞. So, let w ∈ X ′.
Because of the density of the embedding Y ⊂ X ′, given ε > 0, there exists
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wε ∈ Y , such that ‖w − wε‖X′ < ε. Since xn ⇀ y0 weakly in Y as n→∞, we
have

|〈xn − y0, w〉X | ≤ |〈xn − y0, w − wε〉X |+ |(xn − y0, wε)| ≤ 2Mε+ ε

for sufficiently large n. Since ε > 0 is arbitrary, we get xn ⇀ y0 weakly in X
as n→∞, as claimed. �

The next lemma is needed for the weak limit passage in nonlinear operators.

Lemma 6.2. (i) Let X be a Hilbert space. Suppose that functions yn ⇀ y
weakly in L2(0, T ;X), and yn ⇀ y∗ in the w∗-topology of L∞(0, T ;X) as
n→∞. Then y = y∗ a.e. on [0, T ].

(ii) Suppose that functions {yn}n≥1 and their derivatives {ẏn}n≥1 belong to
bounded sets in L∞(0, T ;V ), and L∞(0, T ;H) correspondingly. Also as-
sume that yn ⇀ y weakly in L2(0, T ;V ) as n → ∞. Then yn(t) ⇀ y(t)
weakly in V as n→∞, for any t ∈ [0, T ].

Proof. (i) The weak convergence yn ⇀ y in L2(0, T ;X) means that

(6.2)

∫ T

0

(yn(s), v(s)) ds→
∫ T

0

(y(s), v(s)) ds

for any v ∈ L2(0, T ;X). The weak∗ convergence yn ⇀ y∗ means that

(6.3)

∫ T

0

(yn(s), v(s)) ds→
∫ T

0

(y∗(s), v(s)) ds

for any v ∈ L1(0, T ;X). In particular, (6.3) is satisfied for any v ∈ L2(0, T ;X).

Therefore
∫ T
0

(y − y∗, v) ds = 0 for any such v, which implies that y = y∗ in

L2(0, T ;X), and a.e. on [0, T ].
(ii) We have

|yn(t)− yn(s)|H ≤
∫ t

s

|ẏn(τ)|H dτ

for any 0 ≤ s ≤ t ≤ T . Therefore all the functions {yn}n≥1 are equicontinuous
and equibounded in C([0, T ];H).

By assumption ‖yn(t)‖V ≤ M a.e. on [0, T ] for some M ≥ 0. Since the
embedding of V into H is compact, functions {yn}n≥1 have all their values in
the same compact set K ⊂ H. By the Arzela-Ascoli Theorem the set {yn}n≥1
is precompact in C([0, T ];H), therefore in L2(0, T ;H).

The embedding L2(0, T ;V ) → L2(0, T ;H) is linear and continuous. There-
fore yn ⇀ y weakly in L2(0, T ;V ), implies yn ⇀ y weakly in L2(0, T ;H). Since
the functions are in a compact set in C([0, T ];H), we conclude that yn → y
strongly in C([0, T ];H) as n→∞.

In particular, yn(t)→ y(t) strongly (and weakly) in H for any t ∈ [0, T ]. By
Lemma 6.1(ii), yn(t) ⇀ y(t) weakly in V as n→∞, as claimed. �
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Let H1
0 = H1

0 (0, π) be the Hilbert space defined in (2.7), and 〈·, ·〉1 be
the duality pairing between H1

0 and (H1
0 )′, which is consistent with the inner

product (·, ·) in H.
Following [7], the non-dimensional axial potential energy is given by

(6.4) Ua(u) =
1

2π

(
β +

1

2
|u′|2H

)2

, u ∈ H1
0 ,

and the subdifferential ∂Ua : H1
0 → (H1

0 )′ of Ua, at u ∈ H1
0 is given by

(6.5) ∂Ua(u) =
1

π

(
β +

1

2
|u′|2H

)
∂

(
1

2
|u′|2H

)
=

1

π

(
β +

1

2
|u′|2H

)
Bu.

Here B : H1
0 → (H1

0 )′ is the linear continuous, symmetric, positive and coercive
operator on H1

0 defined by

(6.6) 〈Bu, v〉1 = (u′, v′)H , u, v ∈ H1
0 ,

see Example 9.3. Note that |〈Bu, v〉1| ≤ ‖u‖1 ‖v‖1, where the norm is in H1
0 .

Therefore ‖B‖ ≤ 1.
By Lemma 4.2(iii) used with A = B, we have

(6.7)
d

dt
Ua(y) =

1

π

(
β +

1

2
|y′|2H

)
〈By, ẏ〉1 = 〈∂Ua(y), ẏ〉1.

Lemma 6.3. The subdifferential ∂Ua : H1
0 → (H1

0 )′ is a continuous non-
linear operator, which is Lipschitz continuous on bounded subsets of H1

0 . More
precisely, if ‖u‖1, ‖ū‖1 ≤M , where M ≥ 1, then

(6.8) ‖∂Ua(u)− ∂Ua(ū)‖−1 ≤ cM2‖u− ū‖1.

Furthermore, ∂Ua maps weakly convergent sequences in V into strongly con-
vergent ones in (H1

0 )′.

Proof. Let u, ū ∈ H1
0 , with ‖u‖1, ‖ū‖1 ≤M . Using ‖B‖ ≤ 1, we get

‖∂Ua(u)− ∂Ua(ū)‖−1

≤ 1

2π

∣∣|u′|2H − |ū′|2H ∣∣ ‖Bu‖−1 +
1

π

∣∣∣∣β +
1

2
|ū′|2H

∣∣∣∣ ‖Bu− Bū‖−1
≤ M

π

∣∣|u′|H − |ū′|H ∣∣‖u‖1 +
1

π

∣∣∣∣β +
1

2
M2

∣∣∣∣ ‖u− ū‖1.
Since

∣∣|u′|H − |ū′|H ∣∣ ≤ |u′ − ū′|H = ‖u− ū‖1, inequality (6.8) follows.

Now, let un ⇀ u weakly in V as n → ∞. The embedding of V into H1
0 is

compact. Therefore un → u strongly in H1
0 as n→∞, and the second assertion

follows from the Lipschitz continuity of ∂Ua. �
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7. Arch motion with strong damping µ > 0

The abstract equation for the strong damping arch motion is (3.8) with the
addition of the term µAẏ. The difficulty for the arch motion is that we cannot
claim that the eigenfunctions ϕk of A are also the eigenfunctions of the operator
B. Thus Bym 6∈ Vm.

Definition 4. Let u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H). A function y ∈
Wr[0, T ] is called a solution of the strong arch damping problem with µ > 0 if
it satisfies y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), y(0) = u0, ẏ(0) = v0, and

(7.1) ÿ +Ay + ∂Ua(y) + µAẏ + cdẏ = f,

in V ′, a.e. for t ∈ [0, T ]. Here the operator A : V → V ′ is defined by (2.9), and
the axial potential energy Ua by (6.4). We write y = y(µ) = y(µ)(u0, v0, f) to
emphasize the dependence of the solution on the data.

Lemma 7.1. Let y = y(u0, v0, f) be a solution of the strong arch damping
problem (7.1) with µ > 0, and t ∈ [0, T ].

(i) Then

|ẏ(t)|2H + ‖y(t)‖2A + µ‖ẏ‖2L2(0,t;VA)(7.2)

≤ c
(
|v0|2H + ‖u0‖2A + Ua(u0) + |f |2L2(0,T ;H)

)
.

(ii) Let y1 = y(u0,1, v0,1, f1) and y2 = y(u0,2, v0,2, f2) be two solutions of
(7.1). Then their difference z = y1 − y2 satisfies

|ż(t)|2H + ‖z(t)‖2A + µ‖ż‖2L2(0,t;VA)(7.3)

≤ C

µ

(
|v0,1 − v0,2|2H + ‖u0,1 − u0,2‖2A + ‖f1 − f2‖2L2(0,T ;H)

)
,

where the constant C depends only on the bounds of the initial conditions,
and the loads f1 and f2.

(iii) The solution y(µ) = y(u0, v0, f) is unique.

Proof. (i) Multiply (7.1) by ẏ, and then use Lemma 4.2 and (6.7) to obtain

(7.4)
1

2

d

dt

(
|ẏ|2H + ‖y‖2A

)
+
d

dt
Ua(y) + µ〈Aẏ, ẏ〉+ cd|ẏ|2H = (f, ẏ)H .

Integrate both sides of (7.4) from 0 to t. Note that all the terms in the left
side are non-negative. Thus

|ẏ(t)|2H + ‖y(t)‖2A + 2µ‖ẏ‖2L2(0,t;VA)

≤ |v0|2H + ‖u0‖2A + 2Ua(u0) + 2

∫ t

0

(f(s), ẏ(s)) ds.

Since f ∈ L2(0, T ;H), we have

(7.5) 2

∣∣∣∣∫ t

0

(f(s), ẏ(s)) ds

∣∣∣∣ ≤ |f |2L2(0,T ;H) + |ẏ|2L2(0,T ;H),
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and estimate (7.2) follows by Gronwall’s inequality.
(ii) The difference z = y1 − y2 satisfies

z̈ +Az + µAż + cdż = ∂Ua(y2)− ∂Ua(y1) + f1 − f2.
Multiply this equality by ż ∈ L2(0, T ;V ), and use Lemma 4.2 to obtain

1

2

d

dt

(
|ż|2H + ‖z‖2A

)
+ µ〈Aż, ż〉 ≤ |〈∂Ua(y1)− ∂Ua(y2), ż〉1|+ |(f1 − f2, ż)|.

The pairing 〈·, ·〉1 refers to the space H1
0 . By (7.2), the values of y1 and y2

remain in a bounded set in H1
0 , that depends only on the initial data and

the loads. The subdifferential ∂Ua is Lipschitz continuous on bounded sets
according to Lemma 6.3. Therefore

|ż(t)|2H + ‖z(t)‖2A + 2µ‖ż‖2L2(0,t;VA)(7.6)

≤ C

(
|ż(0)|2H + ‖z(0)‖2A +

∫ T

0

‖z(s)‖1‖ż(s)‖1 ds

+

∫ T

0

|f1(s)− f2(s)|H |ż(s)|H ds
)
.

The last term is estimated as in (7.5), and for the previous term we have

(7.7)

∫ t

0

‖z(s)‖A‖ż(s)‖A ds ≤
C

µ
‖z‖2L2(0,t;VA) +

µ

C
‖ż‖2L2(0,t;VA).

The Gronwall’s inequality gives (7.3).
(iii) The uniqueness follows from (7.3). �

Given m ≥ 1, a function ym = y
(µ)
m is called an approximate solution of the

strong arch damping problem if it satisfies the same conditions as in Definition
4, except that ym(0) = Pmu0, ẏm(0) = Pmv0, and

(7.8) ÿm +Aym + P ∗m∂Ua(ym) + µAẏm + cdẏm = Pmf,

in V ′, a.e. for t ∈ [0, T ]. The operators Pm and P ∗m were defined in Lemma 4.5.

Theorem 7.2. Given u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H), there exists a
unique solution y of the strong damping problem (7.1). The solution satisfies
y ∈ C([0, T ];V ), and ẏ ∈ C([0, T ];H).

Proof. Let ym(t) =
∑m
k=1 gk,m(t)ϕk, where the functions gk,m, k = 1, . . . ,m

satisfy of the following system of m ordinary differential equations

〈ÿm +Aym + P ∗m∂Ua(ym) + µAẏm + cdẏm, ϕk〉 = (Pmf, ϕk)H ,(7.9)

((ym(0), ϕk))A = ((Pmu0, ϕk))A, (ẏm(0), ϕk) = (Pmv0, ϕk),

where k = 1, . . . ,m.
Using Lemma 6.3, all the coefficients of equation (7.9) are Lipschitz contin-

uous on bounded sets. Therefore the system has unique solutions gk,m satis-
fying gk,m, ġk,m ∈ C[0, T ], g̈k,m ∈ L2(0, T ). Thus ym, ẏm ∈ C([0, T ];Vm), and
ÿm ∈ L2(0, T ;Vm).
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Note that

〈P ∗m∂Ua(ym), ϕk〉 = 〈∂Ua(ym), ϕk〉 for 1 ≤ k ≤ m, and

〈P ∗m∂Ua(ym), ϕk〉 = 0 for k > m.

Therefore, in fact, equation (7.9) are satisfied for any k ≥ 1. This implies that
ym satisfies (7.8), that is, ym is an approximate solution of the strong arch
damping problem.

Notice that (6.7) is still applicable to ym, i.e., d
dtUa(ym) = 〈∂Ua(ym), ẏm〉.

Therefore, the estimates in Lemma 7.1 are valid for ym as well. They show that
all the approximate solutions ym, m ≥ 1 remain within the same bounded ball
in L∞(0, T ;V ). Their derivatives ẏn remain in a bounded ball in L∞(0, T ;H),
as well as in L2(0, T ;V ), since µ > 0 is fixed.

Furthermore, let us move all the terms in equation (7.1) to its right side,
except ÿ. The estimates for y and ẏ give an estimate for ÿ in L2(0, T ;V ′).
Clearly, the same estimate is valid for any approximate solution ym. Thus ÿm,
m ≥ 1 remain within the same bounded ball in L2(0, T ;V ′).

Since the Hilbert space Wr[0, T ] defined in (4.2) is reflexive, we can find a
subsequence of {ym}m≥1 (still denoted by ym) such that functions ym, ẏm, ÿm,
m ≥ 1 are weakly convergent in the corresponding spaces. Since the derivatives
are taken in the distributional sense, it follows that there exists y ∈ Wr[0, T ],
such that

(7.10) ym ⇀ y, ẏm ⇀ ẏ, ÿm ⇀ ÿ,

weakly as m→∞. Furthermore, using Lemma 6.2, we can as well assume that
ym ⇀ y, and ẏm ⇀ ẏ in the weak∗ topologies of the spaces L∞(0, T ;V ) and
L∞(0, T ;H) correspondingly.

Now we show that equation (7.1) is satisfied for the constructed function
y. Indeed, the weak convergence implies the distributional convergence. Since
each ym satisfies (7.9), we can certainly pass to the limit as m → ∞ in V ′ in
all the linear terms of this equation. As for the nonlinear operator ∂Ua, we use
Lemma 6.2 to conclude that ym(t) ⇀ y(t) weakly in V for any t ∈ [0, T ]. Then
Lemma 6.3 shows that ∂Ua(ym(t)) ⇀ ∂Ua(y(t)) weakly in V ′ for any t ∈ [0, T ].

This argument also shows that u0,m = ym(0) ⇀ y(0) weakly in V . Thus
y(0) = u0. Using standard methods we can also conclude that ẏ(0) = v0,
[9, Section 3.8.2]. The conclusion is that y is the solution of the strong damping
problem (7.1). The required continuity of y follows from Lemma 4.2. �

8. Arch motion with weak damping µ = 0

In this section we show the existence of a solution for the weak arch damping
problem. Unlike the previous sections, we do not establish the uniqueness of
the solution. Also, we show only that y ∈ C([0, T ];H1

0 ), and ẏ : [0, T ] → H
is weakly continuous. Stronger results are available for uniform (no cracks)
arches, see [6].
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The abstract equation for the arch motion is (3.8), which was derived from
(3.1). The solution is defined as follows.

Definition 5. Let u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H). A function y ∈
W [0, T ] is called a solution of the weak arch damping problem if it satisfies
y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), y(0) = u0, ẏ(0) = v0, and

(8.1) ÿ +Ay + ∂Ua(y) + cdẏ = f,

in V ′, a.e. for t ∈ [0, T ]. Here the operator A : V → V ′ is defined by (2.9). We
will write y = y(u0, v0, f) to emphasize the dependence of the solution on the
data.

Lemma 8.1. Let y be a solution of the weak arch damping problem. Then
y ∈ C([0, T ];H1

0 ), and ẏ : [0, T ]→ H is weakly continuous in H.

Proof. Since ẏ ∈ L2(0, T ;H), we conclude that y ∈ C([0, T ];H). Thus it is
also weakly continuous in H. Since y ∈ L∞(0, T ;V ), Lemma 6.1 shows that
y is weakly continuous from [0, T ] to V . The embedding V ⊂ H1

0 is compact.
Therefore y is strongly continuous in H1

0 .
Since ÿ ∈ L2(0, T ;V ′), we get ẏ ∈ C([0, T ];V ′). Thus ẏ is weakly continuous

from [0, T ] to V ′. Also ẏ ∈ L∞(0, T ;H). Then Lemma 6.1 shows that ẏ is
weakly continuous from [0, T ] to H. �

We establish the existence of the solution by two methods: by taking the
weak limit of the approximate solutions, and by the “parabolic regularization”.
That is, by taking the weak limit of the strong damping solutions y(µ) as µ→ 0.

Given m ≥ 1, a function ym ∈ Wr[0, T ] ∩ C([0, T ];Vm) is called an ap-
proximate solution of the weak arch damping problem, if it satisfies the same
conditions as in Definition 5, except that ym(0) = Pmu0, ẏm(0) = Pmv0, and

(8.2) ÿm +Aym + P ∗m∂Ua(ym) + cdẏm = Pmf,

in V ′, a.e. for t ∈ [0, T ]. The operators Pm and P ∗m were defined in Lemma 4.5.

Theorem 8.2. Given u0 ∈ V , v0 ∈ H, and f ∈ L2(0, T ;H), there exists
a solution y of the weak arch damping problem (8.1). The solution satisfies
y ∈ C([0, T ];H1

0 ), and ẏ is weakly continuous from [0, T ] to H.

Proof. The required continuity properties of the solution y are established in
Lemma 8.1. The existence of the solution is shown by two methods.

Limit of the approximate solutions. Arguing as in Theorem 7.2, the func-
tions ym(t) =

∑m
k=1 gk,m(t)ϕk, are approximate solutions provided that the

coefficient functions gk,m, k = 1, . . . ,m satisfy of the following system of m
ordinary differential equations

〈ÿm +Aym + P ∗m∂Ua(ym) + cdẏm, ϕk〉 = (Pmf, ϕk)H ,(8.3)

((ym(0), ϕk))A = ((Pmu0, ϕk))A, (ẏm(0), ϕk) = (Pmv0, ϕk),

where k = 1, . . . ,m. The solution of this system is unique, and we conclude that
so defined functions ym satisfy ym, ẏm ∈ C([0, T ];Vm), and ÿm ∈ L2(0, T ;Vm).
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Multiply (8.2) by ẏm. Then use Lemma 4.2 and (6.7) to obtain

(8.4)
1

2

d

dt

(
|ẏm|2H + ‖ym‖2A

)
+
d

dt
Ua(ym) + cd|ẏm|2H = (f, ẏm)H .

Integrate both sides of (8.4) from 0 to t. Note that all the terms in the left
side are non-negative. Thus

|ẏm(t)|2H + ‖ym(t)‖2A ≤ |v0|2H + ‖u0‖2A + 2Ua(u0) + 2

∫ t

0

(f(s), ẏm(s)) ds.

Since f ∈ L2(0, T ;H), we have

(8.5) 2

∣∣∣∣∫ t

0

(f(s), ẏm(s)) ds

∣∣∣∣ ≤ |f |2L2(0,T ;H) + |ẏm|2L2(0,T ;H),

and estimate

|ẏm(t)|2H + ‖ym(t)‖2A(8.6)

≤ c
(

1 + |v0|2H + ‖u0‖2A + ‖u0‖4A + |f |2L2(0,T ;H)

)
follows by Gronwall’s inequality. Here we used the fact that ‖u‖1 ≤ c‖u‖A for
any u ∈ V .

The boundedness estimate (8.6) allows us to select a subsequence of the
approximate solutions (still denoted by {ym}m≥1) that converges weakly in
W [0, T ], as well as weak∗ in L∞(0, T ;V ) for ym, and weak∗ in L∞(0, T ;H) for
the derivatives ẏm as m→∞. Let the limit of the sequence be denoted by y.

Arguing as in Theorem 7.2, we conclude that we can pass to the limit in (8.2)
as m → ∞, and obtain (8.1). Thus y is a solution of the weak arch damping
problem.

Limit of the strong damping solutions. Given µ > 0, let y(µ) = y(µ)(u0, v0, f)
be the solution of the strong damping problem (7.1). Its existence and the
uniqueness was proved in Theorem 7.2. Note that y(µ) satisfies estimate (7.2),
where the constant c is independent of µ.

We conclude from (7.2) that all the solutions y(µ), µ > 0 are bounded in
L2(0, T ;V ), and L∞(0, T ;V ), and the derivatives ẏ(µ), µ > 0 are bounded in
L2(0, T ;H), and L∞(0, T ;H). Also, the set {µ‖ẏ(µ)‖2L2(0,T ;V )}µ>0 is bounded

in R. In other words, the set {√µẏ(µ)}µ>0 is bounded in L2(0, T ;V ). In addi-

tion, moving all the terms, except ÿ(µ), to the right side of (7.2), we conclude
that the set {ÿ(µ)}µ>0 is bounded in L2(0, T ;V ′).

Now we can choose a subsequence of y(µ), µ > 0 (still denoted by y(µ)), such
that

(8.7) y(µ) ⇀ y, ẏ(µ) ⇀ ẏ, ÿ(µ) ⇀ ÿ,

weakly as µ → 0 for some y ∈ W [0, T ], in the corresponding spaces. Further-
more, using Lemma 6.2, we can as well assume that y(µ) ⇀ y, and ẏ(µ) ⇀ ẏ in
the weak∗ topologies of the spaces L∞(0, T ;V ) and L∞(0, T ;H) correspond-
ingly.
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Arguing as in Theorem 7.2, we conclude that we can pass to the limit as
µ → 0 in (7.1). Note that µAẏ(µ) → 0 as µ → 0, since the set {√µẏ(µ)}µ>0

is bounded in L2(0, T ;V ), and A is bounded on V . Thus y ∈ W [0, T ] satisfies
equation (8.1) with y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H). That is, y is a solution
of the weak arch damping problem. �

9. Appendix. Convex functions and subdifferentials

Subdifferentials provide the proper mathematical framework for the abstract
formulation of equations of motion. See [7] on how this concept is used for the
derivation of such equations. Here we restrict ourselves to essential examples.

Let X be a Hilbert space. A function φ : X → (−∞,+∞] is called proper
and convex on X if φ is not identically +∞, and φ((1 − λ)x + λy) ≤ (1 −
λ)φ(x) +λφ(y) for any x, y ∈ X, and λ ∈ [0, 1]. The function φ is called lower-
semicontinuous on X if every level set {x ∈ X : φ(x) ≤ c}, c > −∞, is closed
in X.

Given a proper, convex, lower-semicontinuous function φ on X, the subdif-
ferential ∂φ : X → X ′ is defined by

(9.1) ∂φ(x) = {x∗ ∈ X ′ : φ(y) ≥ φ(x) + 〈x∗, y − x〉}

for any y ∈ X. Thus ∂φ ⊂ X ×X ′.

Theorem 9.1. Let X be a Hilbert space, and A : X → X ′ be a linear, contin-
uous, and symmetric operator, such that D(A) = X, and 〈Au, u〉 ≥ 0 for any
u ∈ X. Then function φ : X → R defined by

(9.2) φ(u) =
1

2
〈Au, u〉, u ∈ X,

is convex, proper, and lower-semicontinuous on X. Moreover, it is Fréchet
differentiable on X with ∇φ(u) = ∂φ(u) = Au for any u ∈ X, and D(φ) =
D(∂φ) = X.

Example 9.2. Let V be the Hilbert space defined in (2.4), and A be the linear
operator defined in (2.9). Let

(9.3) ϕ(u) =
1

2
〈Au, u〉, u ∈ V.

By Theorem 9.1 with X = V , function ϕ : V → R is proper, convex, and
lower-semicontinuos on V . Furthermore, D(∂ϕ) = V , and ∂ϕ(u) = Au for any
u ∈ V .

For a general u ∈ V , the expression for ∂ϕ(u) ∈ V ′ is complicated. However,
if we assume that u is somewhat more regular, then we can get a simpler
expression for it.

Suppose that u ∈ D(A) ⊂ V . Then, by Theorem 2.2, we have Au = u′′′′

a.e. on every interval li, i = 1, . . . ,m+ 1. Thus, we can say that ∂ϕ(u) = u′′′′

a.e. on every such interval.
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Suppose further, that u ∈ H1
0 (0, π)∩H4(0, π) ⊂ D(A). Then u′′′′ ∈ L2(0, π),

and u′ is smooth. Thus J [u′](xi) = 0 for any i = 1, . . . ,m, and we have

(9.4) 〈∂ϕ(u), v〉 = 〈Au, v〉 =

∫ π

0

u′′(x)v′′(x) dx =

∫ π

0

u′′′′(x)v(x) dx

for any v ∈ V . Therefore, in this case ∂ϕ(u) = u′′′′ a.e. on [0, π].

Example 9.3. Let H1
0 = H1

0 (0, π) be the Hilbert space defined in (2.7), and
〈·, ·〉1 be the duality pairing between H1

0 and (H1
0 )′. Let B be the linear operator

defined by

(9.5) 〈Bu, v〉1 = (u′, v′)H , u, v ∈ H1
0 .

Then B : H1
0 → (H1

0 )′ is continuous, symmetric and coercive on H1
0 . In partic-

ular, B is positive, and its range is (H1
0 )′.

Let

(9.6) ψ(u) =
1

2
〈Bu, u〉, u ∈ H1

0 .

Theorem 9.1 is applicable with X = H1
0 , and A = B. We conclude that

the function ψ : H1
0 → R is proper, convex, and lower-semicontinuos on H1

0 .
Furthermore, D(∂ψ) = H1

0 , and ∂ψ(u) = Bu ∈ (H1
0 )′ for any u ∈ H1

0 .
As in Example 9.2, a simpler expression for the subdifferential ∂ψ(u) can be

obtained assuming an additional regularity of u ∈ H1
0 .

Suppose that u ∈ V ⊂ H1
0 . Then we have

〈Bu, v〉1 = (u′, v′)H =

∫ π

0

u′(x)v′(x) dx(9.7)

= −
m∑
i=1

J [u′(xi)]v(xi)−
m+1∑
i=1

(u′′, v)i

for any v ∈ H1
0 . Therefore, in this case,

(9.8) ∂ψ(u) = Bu = −
m∑
i=1

J [u′](xi)δ(x− xi)− u′′,

where δ(x−a), a ∈ [0, π] is the element of (H1
0 )′, defined by 〈δ(x−a), v〉1 = v(a)

for any v ∈ H1
0 .

Suppose further, that u ∈ D(A) ⊂ V . Then, by Theorem 2.2, u satisfies
conditions (2.10)–(2.11). In particular, J [u′](xi) = θiu

′′(xi). Thus, with this
additional assumption on u, we have

(9.9) ∂ψ(u) = Bu = −
m∑
i=1

θiu
′′(xi)δ(x− xi)− u′′,

which is still an element of (H1
0 )′.
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